

DOCUMENT ID D2.1 CONTRACT START DATE 1st FEBRUARY 2016

CONTRACT DURATION 36 Months

DUE DATE 31/07/2016

DELIVERY DATE 02/08/2016

CLASIFICATION Public

AUTHOR/S
C. Strydis, G. Smaragdos, A. Bilas,
C. Kachris, R. Jimenez, V.
Spitadakis, C. Tsalidis, N. Chrysos

DOCUMENT VERSION 1.2

D2.1: Application requirements
and specifications

D2.1: Application requirements and specifications

1 EXECUTIVE SUMMARY

Modern datacenter efficiency can be drastically improved through the inclusion of
specialized hardware accelerators next to traditional CPU nodes. This approach has
effectively given rise to heterogeneous datacenters. The main challenge, now, has
shifted towards the taming of such heterogeneous ensembles of components so that the
datacenter user and owner can take maximum benefit of the specialization offered. In
the wake of such developments, the VINEYARD project aims at making hardware
accelerators easy and transparent to use for significantly improving infrastructure
efficiency while achieving application-side Quality of Service (QoS). VINEYARD proposes
new approaches to integrating accelerators in datacenter environments and to dealing
with heterogeneity and transparency issues. To evaluate the proposed solutions,
VINEYARD starts from existing approaches and uses both application QoS and
infrastructure efficiency as metrics. This deliverable starts with a basic taxonomy of
datacenter applications in terms of QoS requirements. Based on this taxonomy,
application-side requirements that are crucial for each of the considered VINEYARD use
cases are introduced. Deliverable D2.1 has been extended to also include infrastructure-
side requirements, such as resource utilization. Involving both types of requirements is
an intriguing and challenging endeavor since many of these serve opposing objectives.
The three VINEYARD use cases (neurocomputing, financial and data-management) have
been extended by cloud applications. All involved applications are presented in detail
and their respective requirements are given as design objectives for VINEYARD. Their
requirements are summarized in the table below:

Application Requirements
Type

Throughput Latency

Neurocomputing High to Very high n/a Batch processing

Financial Moderate Very low latency
(msec)

On-line processing

(Response-time-sensitive)

Transactional-
analytics

High Low latency (sec) On-line processing

(Rate-sensitive)

2

D2.1: Application requirements and specifications

CONTRIBUTORS

Name Organization

Christos Strydis NEUR

Georgios Smaragdos NEUR

Angelos Bilas FORTH

Christoforos Kachris ICCS

Ricardo Jimenez LeanXcale

Vassilis Spitadakis Neurocom

Christos Tsalidis Neurocom

Nikolaos Chrysos FORTH

Neil Morgan STFC

PEER REVIEWERS

Name Organization

Christoforos Kachris ICCS

Nikolaos Chrysos FORTH

REVISION HISTORY

Version Date Author/Organization Modifications

0.1 16/04/2016 C. Strydis Initial version

0.2 18/04/2016 A. Bilas Sections, structure

3

D2.1: Application requirements and specifications

0.3 18/04/2016 C. Kachris Update on metrics, cost

0.4 25/04/2016 C. Strydis, G. Smaragdos Neurocomputing
application filled in

0.5 30/05/2016 C. Strydis Modified structure, added
material

0.6 30/05/2016 A. Almeida, C. Bravo General structure and
formatting

0.7 12/05/2016 C. Kachris, C. Tsalidis, R.
Jimenez

New input for applications
added

0.8 06/07/2016 C. Strydis Modified structure, added
material for NEUR

0.9 11/07/2016 C. Strydis, G. Smaragdos, A.
Bilas

Modified structure, added
material for NEUR

1.0 20/07/2016 C. Strydis, C. Tsalidis, C.
Kachris, N. Chrysos

Incorporated material
from all partners, reached
document stable version

1.1 26/07/2016 C. Strydis, G. Smaragdos, N.
Morgan

Added more material on
applications, readjusted
application-side
requirements

1.2 02/08/2016 C. Strydis, V. Spitadakis, C.
Kachris, N. Chrysos

Incorporated reviewer
corrections, performed
minor edits throughout

4

D2.1: Application requirements and specifications

(Page intentionally blank)

5

D2.1: Application requirements and specifications

Table of Contents
1 EXECUTIVE SUMMARY .. 2

2 Introduction .. 12

2.1 Goal of deliverable .. 12

2.2 Audience .. 12

2.3 Document structure... 13

3 Datacenter workloads and requirements .. 14

3.1 Datacenter workload concepts and classification .. 14

3.2 Datacenter application requirements ... 17

 Programming effort as a special application requirement...................... 19

3.3 Overview of VINEYARD applications .. 20

4 Infrastructure-side requirements ... 22

4.1 Application-side vs. infrastructure-side requirements 22

4.2 Infrastructure-side requirements .. 22

 Infrastructure software stack ... 22

 Infrastructure-side metrics .. 23

4.3 Combined metrics ... 29

5 Neurocomputing application ... 31

5.1 Application description & functional requirements 31

 Abstract model description .. 32

5.2 Application-side QoS requirements ... 36

 Latency ... 36

 Throughput .. 36

 Job execution time ... 37

 Programming effort .. 38

6

D2.1: Application requirements and specifications

5.3 Datacenter-side requirements .. 38

 Power and energy consumption ... 38

5.4 Motivation for application acceleration .. 39

5.5 Tasks suitable for acceleration.. 39

5.6 Summary.. 40

6 Financial applications ... 41

6.1 Application description & functional requirements 41

 Overall purpose and scope .. 42

 Matching engine of rule-based order-driven markets 45

 Pre-trade system – Risk valuation .. 52

6.2 Application-side QoS requirements ... 60

 Main functional requirements ... 60

 Execution time ... 61

 Latency ... 62

 Throughput .. 62

 Power & energy consumption .. 63

 Programming effort .. 63

 Cost efficiency .. 64

6.3 Datacenter-side requirements .. 64

6.4 Motivation for application acceleration .. 65

6.5 Tasks suitable for acceleration.. 66

6.6 Summary.. 67

7 Transactional-analytics applications ... 69

7.1 Application description & functional requirements 69

 TPC-C .. 70

7

D2.1: Application requirements and specifications

 TPC-H.. 72

 CH-Benchmark ... 74

 Micro-benchmarking ... 75

7.2 Application-side QoS requirements ... 76

 Execution time ... 76

 Latency ... 76

 Throughput .. 77

7.3 Datacenter-side requirements .. 78

 Power efficiency ... 78

 Cost efficiency .. 78

7.4 Motivation for application acceleration .. 78

7.5 Tasks suitable for acceleration.. 78

7.6 Summary.. 81

8 Cloud computing applications ... 82

8.1 Application description & functional requirements 82

8.2 Application-side QoS requirements ... 84

 Throughput .. 85

 Latency ... 86

 Completion time (Total execution time) .. 87

8.3 Motivation for application acceleration .. 87

8.4 Tasks suitable for acceleration.. 87

8.5 Summary.. 88

Table of Figures

Figure 1 Typical software stack in a datacenter ... 14

8

D2.1: Application requirements and specifications

Figure 2 Applications, services, jobs, and tasks. Jobs and tasks may wait in queues (per
requirement type) before execution ... 15

Figure 3 Batch- (or Offline-) vs. Online-Processing applications in the datacenter....... 17

Figure 4 Various batch (high-throughput) and online datacenter applications 18

Figure 5 Application requirements of the VINEYARD use-cases 21

Figure 6 Hardware accelerators have been identified as a potential emerging domain for
the reduction of power consumption in the datacenters [Source: ITRS Roadmap 2015,
Beyond-CMOS Technology Roadmap] .. 27

Figure 7 The olivocerebellar system and its basic modeling abstraction 31

Figure 8 representation of the 3-compartmental model of a single ION cell 32

Figure 9 Representation of a 9-cell network InfOli application 33

Figure 10 FP operations vs Network Size and Connectivity density for different
simulation-based experiments. The worst case scenario (all-to-all) is represented by
100% connectivity density. ... 37

Figure 11 ATM Ecosystem: Main modules and Communication Links 42

Figure 12 ATM Users and Roles ... 43

Figure 13 Trading System Overview ... 44

Figure 14 Demand and Supply schedule: The crossed value 51

Figure 15 Rights and Obligations ... 52

Figure 16 Pre-trade risk valuation .. 55

Figure 17 A Vector-file example ... 57

Figure 18 TPC-C Scaling .. 70

Figure 19 TPC-C Schema .. 70

Figure 20 TPC-C Transaction Mix ... 71

Figure 21 TPC-H Database Schema .. 73

Figure 22 Scaling of TPC-H.. 73

Figure 23 Spectrum of TPC benchmarks and positioning of CH-Benchmark 74

9

D2.1: Application requirements and specifications

Figure 24 CH-Benchmark database schema .. 75

Figure 25 LeanXcale Functional Blocks ... 79

Figure 26 LeanXcale Transactional Functions .. 79

Figure 27 Spark framework ... 83

Figure 28 The Spark libraries ... 84

Figure 29 Classification of cloud applications and typical frameworks employed 85

Figure 30 95th-percentile latency for memcached [Source: Kozyrakis] 86

Figure 31 Queries-per-Second (QPS) versus Latency [Source: Kozyrakis34] 87

Table of Tables

Table 1 VINEYARD list of application requirements. Can refer to tasks, jobs and whole
applications. .. 19

Table 2 VINEYARD list of infrastructure requirements. Can refer to individual tasks or
whole jobs. .. 24

Table 3 Most widely used datacenter metrics for energy efficiency 25

Table 4 IT power metrics on datacenters ... 26

Table 5 Datacenter requirements projections [Source: ITRS 2015, Executive summary]
 .. 27

Table 6 Neuron requirements per simulation step ... 34

Table 7 Requirements for TYPE-II experiment examples emulating biological systems per
simulation step .. 37

Table 8 Example of orders submitted to auction.. 49

Table 9 Arrangement by price-time precedence .. 49

Table 10 Summary of trades (left) and resulting order book (right) 50

Table 11 Example of supply and demand schedules .. 51

Table 12 Formulas for Option valuation .. 55

Table 13 An example of data-center resources required for application execution 65

10

D2.1: Application requirements and specifications

Table 14 Financial applications summary table .. 67

Table 15 SLA for latencies in TPC-C ... 76

Table 16 TPC-H Throughput test ... 77

11

D2.1: Application requirements and specifications

2 Introduction

VINEYARD aims at making accelerators easy and transparent to use for the purpose of
significantly improving infrastructure efficiency while achieving application-side Quality
of Service (QoS). VINEYARD proposes new approaches to integrating accelerators in
datacenter environments and to dealing with heterogeneity and transparency issues. To
evaluate the proposed solutions, VINEYARD starts from existing approaches and uses
both application QoS and infrastructure efficiency as metrics.

This deliverable provides a basic taxonomy of applications in terms of QoS requirements.
Based on this taxonomy, we then proceed to introduce the application-side requirements
(and related metrics) that are crucial for each of the considered VINEYARD use cases.
Then, we discuss datacenter-side – thus, infrastructure – requirements. Involving both
types of requirements is an intriguing and challenging endeavor since many of these
requirements serve opposing objectives (e.g. applications may strive for higher resource
usage whereas datacenters may strive for lower resource usage).

2.1 Goal of deliverable

The primary goal of task T2.1 is to identify the requirements addressed by the
participating applications of the use-cases, namely neurocomputing, financial, and
data-management use-cases. Analysis of the various applications will include:

a. Functional requirements: Algorithms, functions, data flows will be defined
and well specified.

b. QoS (non-functional) requirements: Acceptable latency, target throughput,
target throughput per watt, (worst-case) execution time, scalability etc.

Infrastructure requirements posed by datacenter owners will also be presented and
include:

a. Resource utilization: CPU, memory, accelerator, etc.
b. Cost: power consumption, maintenance etc.

2.2 Audience

This deliverable is intended for:

a. VINEYARD partners, including the application providers and infrastructure
experts;

b. The research community that aims at addressing issues related to application
QoS and infrastructure efficiency in modern datacenter servers; and

c. The industry related to the Cloud that is interested in understanding technological
issues that affect cost and evolution of datacenter servers.

12

D2.1: Application requirements and specifications

2.3 Document structure

Chapter 3 opens up with a general taxonomy of datacenter applications and, then, uses
it to classify the VINEYARD applications. This classification is important firstly to help the
reader better understand the field and, secondly, to easily identify which workload
requirements are relevant to which workload class. The chapter, then, introduces
application-side requirements which pave the way for the discussion of the various
VINEYARD applications in the following Chapters 5, 6, 7 and 8.

Chapter 4 discusses infrastructure-side metrics that are related and affect application
behavior. We include this discussion of infrastructure-side metrics because they affect
overall application efficiency and cost.

Chapters 5, 6 and 7 present the functional and QoS (Quality-of-Service) requirements of
the three VINEYARD application use-cases. A new application use-case (Cloud) has been
included in Chapter 8 that studies widely-used cloud applications. This chapter has been
added so as to study the requirements of cloud applications that are deployed in
datacenters and to ensure that the VINEYARD framework can support a wide range of
commonly-used applications. Application-side metrics are listed in these chapters, that
is, metrics relevant from the datacenter-user perspective.

13

D2.1: Application requirements and specifications

3 Datacenter workloads and requirements

In this chapter, we provide a general taxonomy of datacenter applications and, then,
use it to classify the VINEYARD applications. This classification is important firstly to help
the reader better understand the field and, secondly, to easily identify which workload
requirements are relevant to which workload class. We, subsequently, introduce relevant
application-side requirements and their expression in tangible metrics. This chapter will
provide us with the toolset necessary to introduce the four different VINEYARD
applications in the following Chapters 5, 6, 7 and 8.

3.1 Datacenter workload concepts and classification

Modern workloads tend to exhibit increased complexity in their structure, mainly due to
the use of multiple components and the complexity of the underlying software stacks.
Figure 1 shows such a stack that is used to provision resources and to execute different
types of workloads.

Figure 1 Typical software stack in a datacenter

14

D2.1: Application requirements and specifications

In datacenter environments1, a work load is a set of applications that run on a set of
servers and make use of available resources. An application is a single- or multi-server
(distributed) program that is typically run within a single administrative domain, e.g. by
a single provider or client. Applications are started and have an expected execution time.
Applications that run continuously, without terminating, are sometimes called services.
Since this distinction does not affect the work in VINEYARD, we use the term applications
for every program that executes on servers. Each application comprises one or multiple
jobs. A job is a collection of tasks with the same characteristics. Tasks are location-
independent, they can run on any machine (or slice or Virtual Machine – VM), they will
have access to their data over a global namespace, and they may communicate with
other tasks, independently of location. Therefore, from the infrastructure point of view,
we have tasks that originate in different jobs (applications and services) that collectively
form the workload.

Jobs and tasks are typically divided into two broad categories, batch- (or offline-)
processing and online-processing ones. Figure 2 shows these concepts.

Figure 2 Applications, services, jobs, and tasks. Jobs and tasks may wait in queues (per requirement type)
before execution

1 Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. 2013. Omega:
flexible, scalable schedulers for large compute clusters. In Proceedings of the 8th ACM European
Conference on Computer Systems (EuroSys'13). ACM, New York, NY, USA, 351-364.
DOI=http://dx.doi.org/10.1145/2465351.2465386.

15

D2.1: Application requirements and specifications

Batch (or Offline) Processing: Data is processed in groups or batches. Batch
processing is typically used for large amounts of data that must be processed on a
routine schedule, such as paychecks or credit-card transactions. A batch-processing
system typically collects, groups and processes transactions periodically. Batch programs
require no user involvement and require significantly fewer network resources than
online systems (discussed next).

Batch applications typically process high volumes of data that have been collected and
stored. They usually involve complicated processing that needs to be performed on the
data and they imply long execution times. The main performance metric for these
applications is processing throughput. Batch jobs are typically required to finish by a
relatively long (soft or hard) deadline, based on user-expectation or application
requirements. Therefore, batch jobs can wait in a queue, so long as they do not violate
their expected deadline.

Online Processing: An online system handles requests when they occur and provides
output directly to users. Because it is interactive, online processing avoids delays and
allows a constant dialog between the user and the system. The system processes
requests completely when and where they occur. Users interact directly with the
information system. Users can access data randomly. The information system must be
available whenever necessary to support business functions. Therefore, online jobs and
tasks have relatively short deadlines and they cannot generally afford to wait before
starting execution because a user is waiting for the result. Online jobs and tasks, are
sometimes called “user-facing” as well, since typically a user is waiting for the result.

Online-processing applications process high volumes of streaming data and usually the
processing that needs to be done in these cases is simpler than in the case of batch-
processing applications. Online jobs can be further broken down into two sub-categories:

1. Jobs consisting of rate-sensitive tasks: Tasks that need to complete at a
certain rate;

2. Jobs consisting of response-time-sensitive tasks: Each task needs to
complete within a deadline from the time it starts.

A conceptual illustration of batch and online jobs is shown in Figure 3, below.

16

D2.1: Application requirements and specifications

Figure 3 Batch- (or Offline-) vs. Online-Processing applications in the datacenter2

3.2 Datacenter application requirements

A wide range of batch and online applications exists (see Figure 4). As the figure
suggests, batch and online jobs (and tasks) are sensitive to different QoS metrics. Online
jobs, that execute continuously, typically care either about task response time or task
rate. Batch jobs, on the other hand, typically need to finish within the expected deadline
and, therefore, care about job execution time without particular attention to tasks.
Nevertheless, this rule is not absolute. For example, some online jobs have soft deadlines
(e.g. a web search should return in a few seconds), and, in order to meet them, they
may impose hard deadlines on the tasks they spawn3.

Given that jobs are sets of tasks with similar characteristics, we can abstract this view
of the world as follows. In modern infrastructures, we need to deal with multiple
concurrent tasks, each with one of the following QoS metrics:

• Tasks sensitive to response time (latency); typically measured in milliseconds.
Each task needs to finish by a specific deadline.

• Tasks sensitive to rate (or throughput); typically measured in tasks/second.
Tasks need to maintain a completion rate within each measurement interval.

• Tasks sensitive to a collective deadline. All tasks need to finish by a cumulative
deadline.

2 Source: [Online Available:]
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_mfw
orklds.htm
3 Dean, J., & Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2), 74-80.

17

D2.1: Application requirements and specifications

Figure 4 Various batch (high-throughput) and online datacenter applications4

Additionally, users or providers might care to optimize either for average or tail statistics.
Average statistics can be calculated over all or a portion of the tasks. For instance, a
provider might care about minimizing the average response time of 100% or 95% of the
requests. Tail statistics indicate the percentage of requests that are within an acceptable
QoS target. For instance, a provider might care to optimize infrastructure such that
99.99% of user-facing tasks are within 2x of the average response time. As another
example, a user-facing job may care that 99% of its tasks finish within 15 microseconds.
Typically, today, we assume that tasks arrive labeled with the QoS category they belong
to (response time, rate, average or tail, soft or hard deadline and the associated targets)
and it is up to the system to optimize for the corresponding QoS metrics.

Nowadays, there is general belief that modern infrastructure can achieve the required
performance statistics, especially when over-provisioned. On the other hand, it has
become of paramount importance to achieve the performance at high infrastructure
utilization (see Section 4.2 for an in-depth discussion). Additionally, tail statistics are
particularly important today for datacenter workloads because jobs issued by users, e.g.
a user-query, are broken down to multiple tasks and are sent to different servers, sort
of in a fan-out scheme. If – let’s assume – each user request is broken down to 100
tasks and 99% of the tasks are close to the average response time but 1% is far from
it, then each user query will have a “slow” task. Eventually, 63% of all user queries will
be slow5.

4 [Online Available:] http://www.slideshare.net/IMEXresearch/next-generation-data-centers-
11750006
5 Dean, J., & Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2), 74-80.

18

D2.1: Application requirements and specifications

Based on the above, the following list of application requirement types (and related
metrics) are being considered in VINEYARD (see Table 1). In the chapters that follow,
each application provider will describe their respective applications and list those
requirements pertinent for their specific cases. In VINEYARD, we aim to capture
requirements based (a) on a common set of metrics typically used in characterizing
datacenter-deployed applications as well as (b) on a potential set of extra, application-
specific requirements, if desired by the application providers.

Table 1 VINEYARD list of application requirements. Can refer to tasks, jobs and whole applications.

Requirement Definition Related metric (in
units)

Task response
time (or
latency)

(Tt)

Turnaround or response time (average, tail,
total) of a task; that is, the time required
between providing new input to the
datacenter and getting corresponding results
back. Pertinent to online applications.

Milli-seconds

Task rate (or
throughput)

(Rt)

Number of tasks that must be completed per
second. Pertinent to batch applications.

Units/sec

(Units can be tasks,
transactions, FP
operations or some other
app-related quantity)

Job execution
time

(Tj)

The time from submission (when a job is
available to start) until finish (when results
are available). In this definition, execution
time includes queueing delays as well.

Seconds, minutes, or
hours

 Programming effort as a special application requirement

Except for the above requirements, a potentially interesting requirement that would be
interesting to capture is the programming effort, that is, the effort spent to deploying
an application to a datacenter setup. The reason such a requirement could be interesting
and relevant for the application provider (i.e. the datacenter user) is that it would directly
affect the amount of time it takes to port e.g. a reference C-code application to a typical
datacenter setup based on CPUs. In the case of VINEYARD and that of future aspired
datacenters, this programming effort becomes even more crucial as it could
potentially capture the additional effort needed to port (or re-port) an
application to a heterogeneous, accelerator-based datacenter. It is important to
note that programming effort can be directly affected by the amount of optimizations

19

D2.1: Application requirements and specifications

performed. Such is the case – for instance – of performing vectorization optimizations in
a generic Xeon-Phi platform.

Estimating or clocking such programming costs might capture part of the trade-off
between porting a simpler version of an application to a standard, CPU-based datacenter
with limited performance (efficiency) gains versus porting a more complicated version to
an accelerator-based datacenter with significantly improved gains, but at a potentially
recurring extra time cost. Last but not least, the reader can imagine that such a
requirement may also be of interest to the datacenter provider (or other third party) as
well, since it is often the case that application providers outsource the code-deployment
effort of their own applications to the datacenter providers (or other stakeholders of the
datacenter ecosystem) due to lack of coding expertise. In such cases, electing to
dedicate more time in mapping (part of) an application to a particular datacenter
accelerator may cost extra programming time but may yield significant savings on the
part of the datacenter in the form of denser performance per watt or dollar.

The main reason that programming effort has not been added to the primary list of
application (or datacenter requirements) is the difficulty that lies in assessing it in the
form of a metric. Various metrics are being considered ranging from standard Lines-of-
Code (LoC) and algorithmic complexity (e.g. big-O notation) of designed programs, to
application-specific metrics like employee person-months/average employee salary or
some such custom metric. Due to its potential significance, we leave this requirement as
an optional one and shall revisit it during the evaluation phase of the project, provided
that sufficiently robust information on programming effort has been collected across the
various VINEYARD applications and with respect to reference (CPU-only) as well as
improved (accelerator-based) implementations.

3.3 Overview of VINEYARD applications

There are 7 applications considered in VINEYARD across 3 domains, as follows:

• two financial applications (Pre-Trade Real-Time Risk-Management System and
Market-Surveillance Real-Time System);

• one class of neurocomputing applications (high-performance Inferior-Olive
simulation);

• four data-management benchmarks representing enterprise workloads (TPC-
C, TPC-H, YCSB, LinearRoad); and

• Cloud applications based on Apache Spark.

Based on our established taxonomy, the financial and the transactional VINEYARD
applications are online applications, while the neurocomputing application is a batch

20

D2.1: Application requirements and specifications

application. In terms of the cloud applications, we use the SparkBench6 Benchmark that
includes both batch and online applications.

The following figure depicts a high level overview of the applications requirements in
terms of throughput and latency. The specific application requirements of each
application will be described in detail in the following chapters. This figure shows that
each use-case has different characteristics and that the selected applications cover a
wide range (classes) of data center applications.

Figure 5 Application requirements of the VINEYARD use-cases

6 Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. 2015. SparkBench: a
comprehensive benchmarking suite for in memory data analytic platform Spark. In Proceedings
of the 12th ACM International Conference on Computing Frontiers (CF '15). ACM

1

10

100

1000

10000

100000

1 10 100 1000

La
te

nc
y (

Re
sp

on
e

tim
e)

 (m
se

cs
)

Throughput

Application requirements in terms of Throughput and Latency

Neurocomputing

Financial

Transactional-
analytics

Pre-trade
applicationsTrading

system

OLTP
OLAP

21

D2.1: Application requirements and specifications

4 Infrastructure-side requirements

Challenges in datacenters are driven by conflicts between application and infrastructure
trends. For this reason, in this chapter we present infrastructure-side (i.e. datacenter)
requirements. In addition, we introduce and discuss the interesting concept of combined
metrics (i.e. pertaining to both application and infrastructure).

4.1 Application-side vs. infrastructure-side requirements

Nowadays, applications in datacenters (and the Cloud) have challenging QoS
requirements. For instance, services that respond to user requests over the web, typically
need to complete each request in a few milliseconds. Although traditionally new
infrastructures and technologies have targeted to improve average statistics (latency or
response time), today this is not sufficient. Instead, it is important to optimize QoS not
in the average case, but for all requests. As an example, consider the case where a user
request breaks down to a 100 smaller requests that form a single web page that the
user will view. If 1 every 100 requests is slow, then every user request will be slow.

Given such requirements, providers tend to over-provision infrastructure, to avoid spikes
in application QoS degradation. This results in low server (infrastructure) utilization. In
fact, application and infrastructure metrics form an important trend: Allow for
unpredictable application QoS degradation or keep infrastructure utilization low. A main
challenge is to find better solutions to this tradeoff than what is possible today. To
achieve this, it becomes important to not only consider application- but infrastructure-
side metrics, as well.

4.2 Infrastructure-side requirements

 Infrastructure software stack

Modern data centers tend to use complex software stacks (Figure 1) to satisfy job and
task requirements over shared physical resources. This stack is necessary in order to
ensure that multiple clients can have access to the same set of shared resources.
Applications and services arrive at the datacenter from clients. In most cases, an
underlying layer, such as Spark or Hadoop, (aka application runtime framework) typically
partitions client requests into computation chunks (tasks) that can take advantage of the
datacenter's multiple available computing units. A layer below the runtime, such as
Marathon, ensures the persistence of resource allocation to applications and services to
avoid frequent resource allocation requests. At this point, the resources that the
applications can use may be physical and/or virtual. A further layer (such as Mesos) is
used to perform resource allocation from a pool of resources offered by yet another
layer, such as OpenStack. Finally, in case of virtualized resources, a hypervisor or a
container management system is necessary to partition physical resources into virtual
chunks.

22

D2.1: Application requirements and specifications

 Infrastructure-side metrics

Nowadays, with increasing energy and maintenance costs, infrastructure providers strive
to improve the efficiency of their infrastructure, because this is directly related to the
total cost of ownership (TCO) and the return on investment (ROI). The goal is
to use infrastructure as much as possible during its lifetime. TCO is typically broken down
to two components:

• Capital expenses (CapEx): The cost of acquiring equipment.
• Operational expenses (OpEx): The cost of maintaining equipment over its

lifetime.

Today, both of these costs are substantial and constitute significant concerns. However,
in the long term, it is projected that consumed energy and dissipated power (typically
part of OpEx) will dominate TCO. Therefore, research today aims at optimizing power
and energy of modern infrastructures.

Although cumulative (coarse-grain) energy and power are measured and
monitored directly today for full servers or racks, it is more challenging to obtain finer
grain measurements for individual components, such as processors, memories, storage
devices, network devices, controllers, and accelerators.

A first approximation for energy and power can be obtained by examining the utilization
of the different components. Generally, a component consumes more energy and
dissipates more power at higher utilization. However, it is important to note that
components and systems do not exhibit “energy proportionality”7. For instance, a server
may dissipate 75% of its nominal power at idle state. Therefore, the goal is to keep
infrastructure components as utilized as possible during their lifetime. Previous work has
looked into models that estimate power and energy based on component utilization8 and
has proposed various models for estimating power when actual power and energy
measurements are not available.

In VINEYARD, we will measure both utilization and power of resources, at different
granularity and we will augment our measurements with appropriate models. Overall,
our goal is to capture the notion of efficiency of different (significant) components, such
as CPUs and accelerators in terms of utilization, energy, and power.

7 Luiz André Barroso and Urs Hölzle. 2007. The Case for Energy-Proportional Computing.
Computer 40, 12 (December 2007), 33-37. DOI=http://dx.doi.org/10.1109/MC.2007.443.
8 Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power provisioning for a
warehouse-sized computer. In Proceedings of the 34th annual international symposium on
Computer architecture (ISCA'07). ACM, New York, NY, USA, 13-23.
DOI=http://dx.doi.org/10.1145/1250662.1250665.

23

D2.1: Application requirements and specifications

Table 2 VINEYARD list of infrastructure requirements. Can refer to individual tasks or whole jobs.

Requirement Definition Related metric (in
units)

Energy
consumption

Energy cost (average, peak) for executing a
single task. Pertinent to batch applications.

Joules

Power
dissipation

Power cost (average, peak) for executing a
single task. Pertinent to online applications.

Watts

Power efficiency

(compound req.)

Rate at which useful computations are effected
per a given power budget. Can be calculated
based on the aforementioned performance and
power metrics. Pertinent to online applications.

IPS/W,

FLOPS/W,

transactions/W, etc.

Energy efficiency

(compound req.)

Rate at which useful computations are effected
per a given energy budget. Can be calculated
based on the aforementioned performance and
energy metrics. Pertinent to batch applications.

IPS/J,

FLOPS/J,

transactions/J

etc.

Cost efficiency
(compound req.)

Rate at which useful computations are effected
within a certain expenditure threshold. Can be
partially calculated based on the
aforementioned performance and
power/energy metrics. Pertinent to both batch
and online applications.

IPS/$,

FLOPS/$,

transactions/$,

etc.

More generally speaking, there are various architectural metrics that are used to measure
the performance of the datacenters. The following table (Table 3) lists some of the most
common data-center metrics used for energy efficiency9.

9 D7.1 Description of the energy metrics for data centres, DC4Cities, Project Nº 609304, 2014

24

D2.1: Application requirements and specifications

Table 3 Most widely used datacenter metrics for energy efficiency

The Power-Usage Effectiveness (PUE) and the IT Power-Usage Effectiveness (ITUE) are
the most widely used metrics for the evaluation of the energy efficiency of the data
centers. In VINEYARD, we aim to reduce significantly the energy consumption (and thus
increase the Power Usage Effectiveness) by the efficient deployment of hardware
accelerators that can complete specific tasks offloaded from the processors using much
less energy than the general-purpose processors.

Besides the metrics for capturing power consumption in the datacenters, there are also
some commonly used metrics specifically for the IT infrastructure in the datacenters.
Table 4 depicts metrics for the energy efficiency of the IT infrastructure in the data
centers. In VINEYARD, we aim to increase the IT productivity per Embedded Watt (IT-
PEW), the IT Equipment efficiency and the Space, Watt and Performance efficiency
(SWaP) metrics.

25

D2.1: Application requirements and specifications

Table 4 IT power metrics on datacenters

4.2.2.1 Requirements concerning datacenter vendors

The following table (Table 5) shows datacenter requirements from the viewpoint of
technology scaling, based on the ITRS 2015 Report. As is clear from the table, while the
number of cores and the main memory will keep increasing significantly in the future,
the total power consumption per server unit will remain almost the same (~700W), due
to thermal constraints. Therefore, more energy-efficient solutions need to be adopted in
order to keep the overall power consumption low.

As is also shown in the table, datacenter efficiency in terms of GFLOPS/W will have to
increase from 2.4 GFLOPS/W to 10 GFLOPS/W by 2019 and to 24 GFLOPS/W by 2023.
Therefore, novel solutions such as the use of hardware accelerators that are more
energy-efficient need to be adopted. ITRS has recently identified hardware accelerators
as one of the key elements for the reduction of the power consumption in the sector of
BigData and cloud computing (see Figure 6).

26

D2.1: Application requirements and specifications

Table 5 Datacenter requirements projections [Source: ITRS 2015, Executive summary]

Figure 6 Hardware accelerators have been identified as a potential emerging domain for the reduction of
power consumption in the datacenters [Source: ITRS Roadmap 2015, Beyond-CMOS Technology

Roadmap]

27

D2.1: Application requirements and specifications

4.2.2.2 Requirements concerning datacenter operators

Understanding the energy consumption associated with all elements of a datacenter is
essential to accurately define the total cost of ownership and drive efficiency savings at
each layer of the infrastructure stack. The ability to accurately monitor infrastructure and
environmental conditions within the datacenter is essential. Providing the ability to
optimize available resources and reduce costs as well as providing valuable data to
inform strategic planning. The ability to combine system and infrastructure data with
application run data enables intelligent scheduling of workloads to increase throughput
while minimizing costs.

The ability to query systems and supporting infrastructure via integrated protocols such
as Modbus, BACnet, SNMP and IMPI provides data on power and energy usage as well
as diagnostic monitoring information. The use of building-management systems (BMS)
or other Data-Center Integration-Management (DCIM) tools allows automated
monitoring and reporting. Together with environmental data such as temperature and
humidity and workload data (power, energy and runtime) it is possible to analyze the
impact of given workloads across the infrastructure stack. This data can be used to
accurately estimate power and energy consumption and inform job scheduling policies.
Given variations in energy cost during a 24 hour cycle it is common to schedule jobs to
run given times of the day or night maximize throughput whilst minimizing energy
consumption.

Predicting the energy and performance profile characteristics of applications on a range
of hardware can also be used as part of an energy aware scheduling approach. When
considering system level energy consumption it is valuable to understand both the
dynamic and static energy consumption of the hardware. For Intel based machines with
the Running Average Power Limiting (RAPL) facility it is possible to employ Dynamic
Voltage Frequency Scaling (DVFS) to potentially reduce the overall dynamic energy
consumption of an application by throttling the CPU frequency. This technique is not
applicable to all applications but has been shown for some application to save overall
energy whilst incurring a modest increase in overall runtime. The RAPL feature can also
be used to suspend systems or individual nodes within a system and place them in a low
power state sleep state when not in use. Reducing the static energy consumption of
systems that have low or sporadic utilization this can lead to significant energy savings.

Together these techniques can be used to correlate power and energy data along with
application level monitoring and prediction to validate the accuracy of the power and
energy consumption.

28

D2.1: Application requirements and specifications

Requirement Definition Related Metric

Infrastructure and
Systems Power and Health
Status Monitoring via BMS
and/or DCIM solutions.
e.g. Chillers, Cooling Loop
Pumps, Cooling Towers,
Transformers, Universal
Power Supplies (UPS).

Ability to monitor power
consumption and infrastructure
health data / performance
metrics via SNMP, BACnet and
Modbus. E.g. Cooling Tower
Efficiency, Transformer and UPS
measurement of loss.

Power (Watts)

Temperature (°C / °F)

Efficiency % of optimal.

Data Centre Environmental
Monitoring.

Measurement and recording of
temperature and humidity within
the data centre to identify
hotspots and potentially
hazardous increases in humidity.

Humidity (%)

Temperature (°C / °F)

Application Performance
Monitoring via scheduling
software or other third
party tools e.g. IPMI.

Monitor application level power
and energy consumption.
Correlate, job, resource and
licence data across all systems.

Runtime (Seconds)

Power (Watts)

Energy (Joules)

4.2.2.3 Requirements concerning datacenter users

The VINEYARD application providers have attempted to propose various datacenter-side
requirements that – in the context of their respective applications – may improve
datacenter performance, and can – indirectly – also lead to improvements on their
deployed datacenter applications. Such requirements from the standpoint of application
providers can be found in the respective application chapters, in Sections 5.3, 6.3 and
7.3.

4.3 Combined metrics

In the previous sections we have discussed significant metrics used today from the
application and infrastructures sides. Today, it is fairly straight-forward to optimize for
either of these metrics individually.

From the application side, a provider can target a low degree of consolidation and run
an application on an over-provisioned server. This will generally result in good application
behavior. This over-provisioning approach is used today because in many market
segments it is preferable to keep customers happy rather than be as efficient as possible.

29

D2.1: Application requirements and specifications

Amazon reports that it loses 1% of sales for an increase of 100 ms in response latency.
Also, this approach has historically been fueled by improvements in technology that allow
us to create larger servers with more and more resources (cores, memory, network,
storage).

On the other hand, if we consider only the infrastructure-side metrics, it is relatively easy
to drive utilization high, by consolidating many applications on a single server, typically
via virtualization or containers. This has been a trend over the last few years, as there
are increasing (cost) concerns about running servers at low utilization.

The main challenge we face today is to achieve a balance between the two sides: To
operate infrastructure at high utilization without damaging user experience.

To help us evaluate alternatives and solutions in this direction, we plan to use combined
metrics that take into account both application QoS and infrastructure efficiency.
Previous work has taken such steps, however, there are a number of challenges to
address. Such combined metrics are generally not used today. Our goal in VINEYARD is
to refine existing approaches and introduce new ones for evaluating the use of
accelerators in future datacenter infrastructures.

30

D2.1: Application requirements and specifications

5 Neurocomputing application

5.1 Application description & functional requirements

The neurocomputing application of VINEYARD is a highly accurate computational model
of the inferior-olivary nucleus in the brain. Each biological neuron in that nucleus (i.e.
biological neuronal network) is an electrochemically excitable cell that processes and
transmits signals within the brain. The biological neuron comprises, generally speaking,
three parts (called compartments in neuromodeling jargon): The Dendrites, the Soma
and the Axon. The dendritic compartment represents the cell input stage. The dendrites
pick up electrochemical stimuli from other cells and transfer them to the soma. In turn,
the soma processes the stimuli and translates them into a cell membrane potential, which
evokes a cell response called an action potential or, simply, a spike10. This response is
transferred through the axon, which is the cell output stage, to other cells. An
electrochemical connection between two cells (axon-dendrite) is called a synapse. This
is a simplified description of the neuron. In reality, electrochemical processes are taking
place in every neuron compartment. Potentially a neuron model can have hundreds of
compartments.

Figure 7 The olivocerebellar system and its basic modeling abstraction

10 G. Wulfram and W. Werner. Spiking Neuron Models. Cambridge University Press, 2002.

31

D2.1: Application requirements and specifications

The inferior-olive application (abbrev. InfOli) is a model that represents the inferior-
olivary nucleus (ION). This is an intricate part of the olivocerebellar system which is one
of the most dense brain regions and plays an important role in sensorimotor control. It
does not initiate movement by itself but it does provide rhythm and coordination for
motor functions. It is considered to be imperative for the instinctive learning and smooth
completion of motor actions. The inferior olive provides one of the two main inputs to
the olivocerebellar system through the so-called climbing fibers, the other being the
mossy fibers. The inferior-olivary neurons are also heavily interconnected to one another
through direct electrical connections between their dendrites, called gap junctions (GJs).
Gap junctions define the synchronization behavior between the inferior-olivary cells and,
subsequently, influence the synchronization and learning properties of the overall
system11.

Figure 8 representation of the 3-compartmental model of a single ION cell

 Abstract model description

The InfOli model was constructed by Jornt de Gruijl et al12. It is an extended Hodgkin-
Huxley (eHH) neuron representation. HH models are the simplest biophysical
representation of a biological neuron and one of the more prolific neuron models in the
field. Simpler models that can emulate biological I/O behavior exist but represent the
neuron as a black box. HH modeling is biophysically meaningful, meaning that it

11 C.I. De Zeeuw, F.E. Hoebeek , L.W.J. Bosman, M. Schonewille, L. Witter, and S.K. Koekkoek.
Spatiotemporal firing patterns in the cerebellum. NatRev Neurosci, 12(6):327–344, jun 2011.
12 J. R. De Gruijl, B. Paolo, G. de Jeu Marcel T., and D. Z. C. I., “Climbing Fiber Burst Size and
Olivary Sub-threshold Oscillations in a Network Setting,” PLoS Comput Biol, vol. 8, 12 2012.

32

D2.1: Application requirements and specifications

represents the actual electrochemical processes within the neuron, modeling them as RC
circuits.

The ION model implements a neuron with the three basic compartments: the dendrite,
the soma and the axon, as mentioned above. Within the dendrite, the model also
includes the gap junctions which implement the inter-neuron connectivity within the
inferior-olive nucleus. It is these GJs that complicate the model further and add the term
“extended” to the standard HH model. The GJs are associated with important aspects of
cell behavior as they are not just simple connections, as previously mentioned. Their
significant and intricate electrical processes are reflected in their model implementation.
The ION cells constantly influence each other through the GJs, leading the neurons or
sub groups of neurons within the nucleus to synchronize their behavior according to the
outside stimuli.

Every compartment includes a number of state parameters denoting its electrochemical
state and the neuron state as a whole. The neuron state is updated at each simulation
step; every new state update is based upon: (i) the previous state of the compartment
updated, (ii) the previous state of the other compartments of the same neuron (mainly,
the compartment voltages), (iii) the previous state of the dendritic compartment of the
neurons to which the updating neuron is connected through the GJs (the dendritic
voltage), and (iv) the externally evoked input to the InfOli, representing the input coming
from the rest of the cerebellar circuit into the nucleus. The three compartments and GJs
are evaluated/updated concurrently at each simulation step. The model is calibrated with
a simulation time step of δ = 50 μs. The output to the system is considered to be the
Axon voltage of each neuron per simulation step. In actual scientific experiments though
every neuron state can be a potential output, depending on the subject of the
experiment.

Figure 9 Representation of a 9-cell network InfOli application

33

D2.1: Application requirements and specifications

Experiments practically use a number of connectivity patterns for this application. Thus,
the application needs to potentially support all possible connectivities. We assume the
worst-case scenario of all-to-all interconnection that also reflects that support
requirement. In real deployments, the connectivity of the network would be defined
using a simple connectivity matrix to be manipulated by the researchers in the field
before each experiment.

A quick profiling of the C version of the application, as we can see in Table 6, reveals
that the extended complexity of the neuron, and especially the presence of the GJ, makes
for a quite demanding application13.

Table 6 Neuron requirements per simulation step

Computation FP operations per neuron

Gap Junction 475 per connection

Cell Compartment 859

I/O and Storage FP variables per neuron

Neuron States 19

Evoked input 1 per simulation step

Neuron Conductances (cell biophysical parameters) 20

Axon Output 1 per simulation step

Compartmental Task % of FP ops for 96 cells

Soma 13

Dendrite 10

Axon 8

Gap Junction 69

13 G. Smaragdos, S. Isaza, M. V. Eijk, I. Sourdis, and C. Strydis, “FPGA-based Biophysically-
Meaningful Modeling of Olivocerebellar Neurons,” in 22nd ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), Feb. 2014.

34

D2.1: Application requirements and specifications

Already at the point of a 96-cell network, the GJs contribute 69% of the total FP
operations of an all-to-all connected application. The profiling of the application reveals
that, for a model that includes the GJ feature, it is the connectivity density (average
percentage of the total neuron inventory to which neuron cells are connected) that
dictates the computational complexity. The GJ computations increase quadratically with
the network size (as the computations are repeated in every neuron, once per simulation
step, for every independent connection), as opposed the linear fashion of the main
neuron compartments, dictating also the overall complexity of the application.

Code 1 GJ computation code

Additionally, the GJ computations themselves are demanding, as they are not just
passive connections, as can be seen in the GJ code segment on Code 1. These
observations constitute the inter-neuron connectivity support in this application as one
of the main challenges of accelerating it.

There are two distinct types of experiments that computational neuroscientists can
conduct with such biophysically realistic models. One is the simulation of small-to-
medium-scale networks (between 100–1000 neurons) that target real-time experimental
setups (TYPE-I experiments). In this case, latency is the main constraint of the
application, as the experiment would demand the step of the simulation to finish within
the time span defined in the neuron model as one simulation step. The second case of
experiments try to simulate large-scale networks (>1000) that begin to resemble and
even reach the sizes of the actual biological systems (TYPE-II experiments). For
example, the mouse inferior olive, that is one of the prime subjects of in-vivo
experiments, consists of about 15,000 neurons. A cat olive has a size of 146,000 neurons
while the human olive consists of around 1,000,000 neurons. In this type of experiments,
population size is the main objective as well as maximizing simulation throughput. This
disconnect between experimentation types is imposed mainly because of technology
limitations but also due to the lack of a comprehensive and scientifically useful methods
to process the amount of generated data simulation at real time.

for (i=0 ; i<InfOli N_INPUT; i++) {
 V = prev_Vdend – neigh_Vdend[i];
 F_new = V ? exp(?1 ? V ? V/100);
 F_acc =+ f_new;
 V_acc =+ V;
 }
Ic = CONDUCTANCE ? (0.8 ? F_acc + 0.2 ? V_acc);
return Ic;

35

D2.1: Application requirements and specifications

5.2 Application-side QoS requirements

The VINEYARD neurocomputing application (a range of applications, in fact) is a
traditional batch-processing application: A certain amount of scientific calculations
representing the simulation of an arbitrarily large neural network has to be executed
within a given deadline. In other words, we concern ourselves here with TYPE-II
experiments since datacenter latencies (not to mention physical setups) would be
unrealistic to use for TYPE-I experiments in the foreseeable future.

 Latency

The main unit of work for this application are the neuron computations within each
simulation step of the application, mainly the cell-compartment and the GJ computations.
The simulation step of the mathematical model is set at 50 μs. This is a very stiff
requirement as any other calibration leads to either a non-function model or a very
unstable one. This constraint is another specific challenge, which the acceleration of the
application needs to tackle. An application run that can support this constraint is
considered to run the brain simulation at real-time speed. Since, for VINEYARD, only
batch-mode simulations are considered, real-time latency is not required by the jobs that
are to be sent to the data-center. Thus, even though this latency constraint exists within
the model, there is no absolute requirement to meet it for the neuroscientific
experiments to be usable, as long as the datacenter execution achieves significant
speedup compared to conventional means of computing.

 Throughput

For datacenter-based experiments, the focus is throughput. In this case, real-time
execution is not required as most experiments are based on off-line analysis. The 50-μs
latency constraint is relaxed. The problem size (network size in the InfOli case) scales
up rapidly to be able to resemble or emulate the networks sizes of the biological systems
(as the examples mentioned in the previous section). The FP operations required for
medium-scale experiments can be seen in Figure 10.

Additionally, the conducted experiments are also long in simulated brain-time duration,
often aiming at 100-200 seconds. This adds much more stress to the I/O of the
application as well as to the storage requirements, as both the input and output data
increase in scale. In Table 7, we can see the application requirements for experiments
that would attempt to simulate the full biological counterparts of the ION.

36

D2.1: Application requirements and specifications

Figure 10 FP operations vs Network Size and Connectivity density for different simulation-based
experiments. The worst case scenario (all-to-all) is represented by 100% connectivity density.

Table 7 Requirements for TYPE-II experiment examples emulating biological systems per simulation step

 Mouse ION Cat ION Human ION

Input (Gb) 0.830 79.400 3,725

Output (Gb) 0.001 0.010 0.070

Storage Registers (Gb) 0.840 79.420 3,725.4

Computation (#FP ops) 1.069E+11 1.013E+13 4.750E+14

 Job execution time

This metric is closely related to the throughput constraints. A job in the
neurocomputing application is defined as a single experiment sent to the
datacenter, simulating a certain network size and a specific amount of brain
time. Again, the requirement here is soft. Many of the possible experiments would
require several days of simulation, using conventional means that most neuroscientists
use. Reducing the required time of such an experiment to less than 24 hours would
increase research efficiency greatly. Besides the obvious benefit of the simulation

37

D2.1: Application requirements and specifications

finishing faster, the lower simulation time makes application execution more reliable,
reducing the chance of an experiment halting due to any soft or hard technical failure,
subsequently reducing the need for repeated attempts.

 Programming effort

There is no hard programming-effort constraint for this application. The limitation mostly
comes from the target audience and the nature of working with such applications in
computational neuroscience. Since the target audience are the neuroscientists, they will
require programming frameworks that they are familiar with. Most modelers in the field
work with Python-, XML-, MATLAB-based languages. A programming frameworks that is
as intuitive as these or, even further integrated to these programming environments
would be essential for adoption by the community. Otherwise, unless an engineering
expert supports the process, acceleration setups are highly unlikely to be widely used by
the neuroscientists.

Additionally, such a programing framework must be able to handle rapid changes that
are constantly issued on models while executing experiments, a process that the
computational neuroscientists call model fitting. Thus, the programming environment
must not require over-optimization to provide good benefits as to keep the programming
effort and, thus, the development time during fitting manageable.

5.3 Datacenter-side requirements

The InfOli application for large-scale experiments operates in batch mode. Hard
deadlines for the end of experiments do not exist as all processing is to be done offline.
That being said, the units/sec throughput delivery is definitely relevant as shorter
experiments with higher throughput will yield the aforementioned benefits to the
research process. The job in the InfOli application is defined as a single experiment run
requested by the neuroscientist client, including the execution of a whole network for
several simulation steps. Each job comprises tasks that execute the calculations of a
subset of the network within one simulation step. The datacenter nodes will need
to synchronize after all tasks within a simulation step are completed.

 Power and energy consumption

Large-scale experiments would require larger simulation setups in which
energy/maintenance costs become increasingly significant. A thorough analysis of the
power and energy consumption and the attempt to run the InfOli application with high
power and energy efficiency is constantly relevant. Such costs would significantly
influence the ability of a research organization to maintain and support these
experiments. That being said, there is no concrete constraint as such a limit is tightly

38

D2.1: Application requirements and specifications

tied to the resources and budget of the respective research organizations but defining
an analytical cost model is difficult.

5.4 Motivation for application acceleration

The description and the computational demands of the application make the need for
acceleration clear. It is an application that potentially has very hard latency constraints
(when targeting real-time experiments) and very high throughput demands for large-
scale experimentation. Indeed, the ideal platform for the model would be one that can
simultaneously provides both high throughput and low latency.

Typical technology cannot cope with such demands in a satisfying way. A large part of
the trend in computational neuroscience to use simpler, less accurate models than the
HH or use such biophysically accurate representations on a very small scale, comes from
the technical limitations of typical computing. Unless an organization has the funds to
sustain a very large homogenous supercomputing cluster, truly effective experiments
are difficult to conduct. Accelerator platforms can improve this point to a great extent,
providing similar performance benefits to a fraction of the maintenance and energy costs,
while at the same time accelerating the research process itself14.

Moreover, the different ways that this application can be used, with so variant cases of
problem sizes, experiment lengths and varied throughput demands, can benefit greatly
from a heterogeneous acceleration platform. Just slight differences on these aspects can
shift application behavior, thus making various accelerators viable and efficient for use,
on a case-by-case basis. Thus, a heterogeneous set up that provides a variety of options
is a perfect fit for this and similar classes of computational neuroscience workloads.

5.5 Tasks suitable for acceleration

The C profiling of the InfOli application reveals the GJ as the main computational
bottleneck and also the aspect that dominates the computational complexity of the
application. This is the first task that should be tackled through acceleration. Secondly,
the main-compartment computations are also significant. Although scaling linearly with
the problem size, they still include a good deal of computation. Additionally their dataflow
nature gives great potential for parallelization on an accelerator platform.

Large-network experiments require also significant I/O traffic. Yet, for this specific
application, no matter the problem size, the computation still remains dominant. Even
though efficient data communication is useful and desirable, the main challenge for
throughput are still the GJ/neuron computations as they scale up much more rapidly

14 E. Izhikevich. Which Model to Use for Cortical Spiking Neurons? IEEE Trans on Neural Net.,
15(5), 2004.

39

D2.1: Application requirements and specifications

than the communication demands. Another important aspect to be considered are also
the storage/memory capabilities of each accelerator, as biologically accurate
experiments will certainly bring these capabilities to its limits regardless of platform.

5.6 Summary

To summarize, most of the requirements for this application are soft, as the more a
datacenter can provide in terms of low latency, high throughput and energy efficiency
the better. The main impact of limiting these requirements would be the size of the
simulated neural networks in the experiments, leading to qualitative differences in the
ability to research certain behaviors of the network explored, even though not
necessarily invalidating their scientific merit.

Throughput limitations would affect experiments and the scale of the network explored,
making it less biologically plausible compared to real-life counterparts. But even though
a large-scale network might still be far off from biological systems, it can still be used
effectively to research network behavior. Thus, a hard upper constraint on a network
size that provides meaningful experiments does not exist.

40

D2.1: Application requirements and specifications

6 Financial applications

6.1 Application description & functional requirements

This section describes the requirements of the financial use case for the VINEYARD
project and its foreseen cloud infrastructure. The use case redesigns parts and critical
modules of the “ATHEX Trading Machine” (ATM).

Automation using Technology in Trading & Exchanges is considered as de-facto principle
nowadays. The historical “Battle of the Bund” demonstrated the value of technology in
trading in a very public way15. But technology is getting old quickly and organizations
using automation requires continuous technological change in order to stay competitive.
The two prominent issues that Exchanges technology encounters these days are: Ultra
Low Latency and High Frequency Trading. These two factors seem that will specify
the design of the new trading environments. New technologies enable faster and more
complex ways of trading, which has ultimately shifted trading activities to demand more
interdisciplinary skills and ask collaborative work to be performed and deliver sufficient
supporting mechanisms. This rapid, concurrent change in financial markets and
technology is putting pressure on firms and Exchanges in a variety of ways.

Globalization of Exchange Market is a fact imposing standard mechanisms of
communications between firms and exchanges all over the globe. By adopting FIX16
standard, we enable the participation in the global markets by significantly reducing the
cost17. Exchange market is hungry for a unified, global trading platform that facilitates
global expansion in a risk-controlled environment. Automatic trading adds new types of
risks as it misses human common sense. Protection of the market is of top priority and
automated risk controls can and should feature prominently in a multilayer risk
management system. Risk controls contain detection of runaway algorithms and big-
finder errors as well as support of a number of automated safeguards, including volume
controls, circuit breakers to halt markets in extremely volatile market conditions, and
message policies to deter excessive activity by trading firms.

Concluding, our job in this project is to apply the “use the right tool for the right job”
principle by choosing the appropriate technologies for demanding tasks of ATM. GPUs
for the computationally intensive tasks, increasing the trading throughput and FPGAs

15 Stephanie Hammer, Architects of Electronic Trading: Technology Leaders Who are Shaping
Today’s Financial Markets, Wiley Press 2013
16 The Financial Information eXchange (FIX) protocol is an electronic communications
protocol for international real-time exchange of information related to the securities transactions
and markets.
17 Source: [Public Available] FINANCIAL INFORMATION EXCHANGE PROTOCOL (FIX) Version 4.4,
http://www.fixtradingcommunity.org/pg/structure/tech-specs/fix-version/44
FINANCIAL INFORMATION EXCHANGE PROTOCOL (FIX) Version 5.0 Vol 1-7,
http://www.fixtradingcommunity.org/pg/structure/tech-specs/fix-version/50#Documents

41

https://en.wikipedia.org/wiki/Security_%28finance%29

D2.1: Application requirements and specifications

for data parsing, validation and transformation as it crosses the switch – with net-zero
latency penalty.

 Overall purpose and scope

The purpose of this work is to analyze the needs for the most critical Trading Engine
functions. By “Trading Engine” we mean a software mechanism that accept orders
concerning sell and buy actions on instruments and match them using algorithmic trading
methods producing trades according to well–defined rules. The main objective of ATM is
to provide a modern and efficient engine for the trading of shares in a manner such that
it will efficiently encounter high volumes of orders following extremely latency-sensitive
strategies and adopting newer generation processors in order to facilitate the support of
High Frequency Trading.

The final system must possess an open architecture that will enable placement of risk
checks in whichever location will work best with the market’s business strategy: pre-
trade, at the match or post-trade. The target is to offer better control of market health
by ensuring all market participants are meeting pre-defined parameters. Additionally,
risk checks must cover cross-asset, cross-market analysis and be designed for low-
latency so that member execution speed is not severely impacted.

The ATM eco-system includes the following major modules which communicate with
each other according to the very high-level communication diagram in Figure 11.

Figure 11 ATM Ecosystem: Main modules and Communication Links

Broker (Trader) – The users of the market – investors, banks, investment firms, etc
Other users include the public and the administrators with certain roles and authorities
(see Figure 12)

Transport Application Protocol- It services all routing and communication functions
(gates, translations) among the external world and stock market components.

42

D2.1: Application requirements and specifications

Authentication / Authorisation – Security assurance functions that guarantee
validity of transactions and authenticity of users and systems.

Pre/Post Trade- Functions that prevent faults and fraud, before or after the trade. Risk
management and market surveillance are among the most critical pre/post trade
functions. The pre-trade risk valuation system is described in detail in Section 6.1.3.

Trading System (TS) or Trade Engine- It is the core engine that gets orders and
provides trade results. Its core element is the matching engine, which is described in
detail within subsection 6.1.2.

Figure 12 ATM Users and Roles

The overall ATM trading system comprises of several modules and roles, as described
briefly below, in the Figure 13 below, where main processes and interfaces are depicted:

43

D2.1: Application requirements and specifications

Figure 13 Trading System Overview

Processes

ME (Matching Engine) – A Number of matching engines (one or more processes each)
should run in a parallel way. The number of the Matching Engines (MEs) depends on the
market segmentation. The lowest level of the market segmentation is one financial
instrument such as Security, Bond, and Derivative.

Router- This is the process responsible to receive all the messages and to forward them
to the appropriate Matching Engine, according to the market segmentation. Also, it sends
those messages to the Failover Interface.

Distributor– This is the process responsible to receive all the Market Data coming out
from the MEs and distribute them to the appropriate Output Interface.

MM Observer– This is the process that is used to monitor the obligations of the Market
Makers during the trading session. The input of this process is some Reference Data and
the Market Data Events.

Interfaces

Binary Gateways –TCP/IP as communication protocol. Fixed-length binary format of
transactions. Business rules authorization.

FIX Gateways - TCP/IP as communication protocol. FIX session layer support. Binary
to FIX translation of business transactions. Business rules authorization.

44

D2.1: Application requirements and specifications

CDB Interface – Oracle SQLnet as communication protocol. Used to load the reference
data for the trading session (instruments, members, market rules) at system startup.

External Input Interfaces - Utilizes TCP/IP as communication protocol. Receives
messages from some external systems during the trading session such as Pre-Trade
Risk.

External Output Interfaces - Utilizes TCP/IP as communication protocol. Sends out
information during the trading session to external systems such as Surveillance system

Market Data Binary Interfaces - Utilizes TCP/IP as communication protocol. Sends
out the Market Data in a binary format.

Market Data FIX Interfaces - Utilizes TCP/IP as communication protocol. Translates
and sends out the Market Data in the FIX format.

Failover Interface – Sends all the received messages to a mirror trading system in
asynchronous manner. The mirror system executes the events at the same time with the
primary one.

ATM’s vision to grow, will encounter the need to handle a growing number of
components, even reaching up to the following numbers:

• Number of Gateways: >= 3000
• Number Input Interfaces: >= 20
• Number Output Interfaces: >= 20
• Number of Instruments: >= 20.000

In such context needs, the ATM needs to be re-engineered while preserving and
achieving high frequency trading. One of the functions that take part in the overall
system latency are related to the Transport Application functions, namely the FIX
gateways, and certainly will need to be revisited while converging to high frequency
trading environments. Moreover, the most critical subcomponents, which are the
Matching Engine and the Pre-trade risk valuation subsystems will be also among
the ones to redesign, and will rely on accelerator components. A deeper view into them
gives a better understanding for their functions, including also the interesting operations
which will be targeted to improve within the project.

 Matching engine of rule-based order-driven markets

A market is the place where traders gather to trade instruments as commons stocks,
bonds, convertible bonds, warrants, etc. Trading is a search problem18. Buyers must find

18 Larry Harris, Trading And Exchanges: Market Microstructure for Practitioners, 2002, Oxford
University Press

45

D2.1: Application requirements and specifications

sellers, and sellers must find buyers. The trading rules and the trading systems used by
a market define its market structure. They determine who can trade; what can trade;
and when, where, and how they can trade. They also determine what information traders
can see about orders, quotations, and trades; when they can see it; and who can see it.

Trading takes place in trading sessions. There are two types of trading sessions, the
continuous trading sessions and the call market sessions. In continuous trading, traders
can attempt to arrange their trades whenever the market is open. Trading is continuous
in the sense that traders can continuously attempt to arrange their trades. In call
markets, all trades take place when the market is called. All traders trade at the same
time when the market is called. Market may call all securities simultaneously or one at a
time in rotation. Many continuous order-driven exchanges (such as ATHEX) open their
trading sessions with call market auctions and then switch over to continuous trading19.
Call is also used after trading halts (e.g. at the application of volatility interruption
mechanism).

Markets produce valuable information about instrument values, transactions, who has
traded, who wants to trade, and the terms on which they are willing to trade. Electronic
trading systems can and produces tons of market information because all information is
already in electronic form. Then, markets present some information to their traders, they
sell some to data vendors, and they save most for regulatory purposes. Market data
systems report trades and quotes to the public. Data vendors offer broadcast services
and query services. Broadcast services provide continuous streams of information. Price
and sale feeds and ticker tapes broadcast trade prices and sizes. Quotation feeds
broadcast quotations. Query services produce information on demand. Users submit
requests for information to the vendor’s data server.

Exchanges provide forums where traders meet to arrange trades. Traders must be
members of the Exchange in order to trade. Modern Exchanges have Order-Driven
Trading Systems that arrange trades by matching buy and sell orders accordingly to a
set of rules using computers. Traders negotiate with each other only by submitting and
cancelling orders. Orders are trade instructions that specify what traders want to trade
and constitute the building blocks of trading strategies. Orders always refer the
instrument (instruments) to trade, how much (volume) to trade, and whether to sell or
buy. An order may also include conditions that a trade must satisfy. The most common
conditions are on the prices that trader can accept. Other conditions may specify if trader
accepts a partial fill, how long the order is valid, where to present the order, and how to
search for the other side. Traders indicate that they are willing to buy or sell by making
bids and offers (or asks). Bids and offers (asks) usually include information about the
prices and quantities that traders will accept. The highest bid price in a market is the
best bid and the lowest offer price is the best offer. A market quotation reports these

19 Source: [ATHEX Corporate Document, Restricted] H Αγορά και το Σύστημα – Γενική Διεύθυνση
Λειτουργιών Χρηματιστηρίου Αξιών Αθηνών (Διεύθυνση Λειτουργίας Αγοράς & Εξυπηρέτησης
Μελών), February 2013

46

D2.1: Application requirements and specifications

best prices with the name BBO (Best Bid and Offer). The difference between the best
ask (offer) and the best bid is the bid/ask spread.

A market order (MKT) is an instruction to trade at the best price currently available in
the market. Market orders usually fill quickly, but sometimes at inferior prices because
they pay the full bid/ask spread.

A limit order (LMT) is an instruction to trade at the best price available, but only if it no
worse that the limit price specified by the trader. For buy orders the price must be at or
below the specified limit price. For sell orders, the price must be at or above the limit
price. In case the order cannot be satisfied it will stand as an offer and placed to a
specialized structure called (limit) order book.

A stop instruction stops an order from executing until price reaches a stop price specified
by the trader. Usually the stop price refers to the same instrument with the order. ATHEX
also uses stop instructions on another instrument or on an index. Orders with stop
instructions called stop orders (STOP) and can be of any type (market or limit)20. Stop
orders became normal orders (activated) when the condition is satisfied.

There are also combination orders having more than one legs where each leg is referring
to a different instrument. All legs are executed as a single transaction. Usually the
number of legs is 2 and such combination orders do not exceed 5% of the total number
of orders, while the trend in high speed trading is to abandon such compound orders
because they are not permitting parallelism.

All prices must follow the rule of minimum price increment – also called the tick or the
minimum price variation – and specifies the smallest amount by which two prices can
differ. It is specified from Exchange and can be at instrument level.

Open orders are orders that have not yet executed or cancelled and usually reside at
order book. A good order is an order that can be executed. All good orders are open
orders.

Orders can have validity and expiration instructions to indicate when they are valid and
when the expiry. These instructions are important for limit and stop orders i.e. for orders
that do not trade immediately upon submission. Day orders are valid for the trading day
on which traders submit them. Good-till-cancel (GTC) orders are valid until the trader
expressly cancels them. Good-Till-Date (GTD) orders or Good-until orders are good until
a date specified by trader. Good-this-week (GTW) and good-this-month (GTM) are
special cases of Good-until orders. Immediate-or-cancel (IOC) orders are orders that are
valid only when they are presented in the market. Whatever portion of the order that
cannot be filled immediately is cancelled. Fill-or-kill (FOK) orders are a type of IOC orders
that the whole volume must be matched or cancelled otherwise. Market-on-open orders
(ATO) or at-the-open are market orders that broker can fill only at the beginning of the

20 Source: [ATHEX Corporate Document, Restricted] ΑΤΗΕΧ RuleBook

47

D2.1: Application requirements and specifications

trading session and the opening price is specified by auction. Market-on-close (ATC)
orders or at-the-close orders are market orders that broker can fill only at the close of
the trading session.

Orders can have quantity instructions specifying the way the quantity filled. The most
common instructions are: All-or-none (AON) orders forbids partial fill, i.e., full execution
of the volume must be achieved or nor execution at all. Minimum-or-none or minimum-
fill (MF) orders specify the minimum size of a trade.

Order-driven markets use trading rules to arrange their trades. Rule-based order-
matching systems use trading rules to arrange trades from the orders that traders submit
to them. All orders specify the maximum quantities that traders will accept. All order-
driven markets use order precedence rules to match buyers to sellers and trade pricing
rules to price the resulting trades.

If the market is a call market, the market collects the orders before the call. Immediately
following the call, the trading system makes one attempt to arrange the trades. If the
market is a continuous trading market, its trading system attempts to arrange trades
whenever new orders arrive.

Rule-based order-matching system uses the same sequence of steps (algorithm) when
attempting to arrange orders. They first match orders using their order precedence rules.
They then determine which matches can trade. Trades will occur only if at least one buy
order offers terms acceptable to at least one seller. Finally, they price the resulting trades
using their trading pricing rules.

To arrange trades, order-matching systems use their order precedence rules to
separately rank all buy and sell orders in order of increasing precedence. They match
the orders with highest precedence first. The order precedence rules are hierarchical.
Systems first rank orders using their primary order precedence rules. If two or more
orders have the same primary precedence, systems then apply their secondary
precedence rules to rank them. All rules are applied one at the time until all orders
ranked.

All systems use price priority rule as their primary order precedence rule. Under this rule,
priority is given to buy orders that bid the highest prices and sell orders that offer the
lowest prices. Market orders always rank highest because the prices at which they may
trade are not limited.

Systems (markets) use various secondary precedence rules to rank orders that have the
same price. The most usually used rules rank orders based on their time of submission,
on their display status and on their size. All systems must have at least one secondary
precedence rule that will disambiguate the competitions. Time precedence rule gives
precedence to the traders whose bid or offer first improves the current best bid or offer.
The price-time precedence rules are the most often used rules from order-driven markets
and the systems that support them called pure price-time precedence systems. Other
types of precedence are:

48

D2.1: Application requirements and specifications

Display precedence gives displayed orders precedence over undisclosed orders
at the same price. Markets give precedence to displayed orders in order to
encourage traders to expose their orders. If an order is partly displayed and
partly undisclosed, the market usually treats the two parts separately.

Size precedence varies from the market to market. In some markets large orders
have precedence over small and in others the opposite. Most markets permit
restrictions (instructions) on size of orders. Traders may specify that entire order
must fulfill at once, or they may specify a minimum size for a partial execution.
Orders with size restrictions usually have lower precedence than unrestricted
orders because are harder to fill.

As an example, in the following table (Table 8) we present the orders submitted in an
auction.

Table 8 Example of orders submitted to auction

Time Broker Side Size Price
12:01 XA Buy 30 2.0
12:05 XB Sell 20 2.1
12:08 XC Buy 20 2.0
12:09 XD Sell 10 1.98
12:10 XE Sell 50 2.2
12:15 XF Buy 40 Market
12:18 XG Buy 20 2.1
12:20 XH Sell 60 2.0
12:22 XK Buy 70 1,98

An order book that arranges these orders by pure price-time precedence presented in
Table 9. Orders with high precedence are presented at the top on the sell side and at
the bottom for the buy side.

Table 9 Arrangement by price-time precedence

SELLERS BUYERS
Trader Size Price Size Trader
XD 10 1.98 70 XK
XH 60 2.0
 2.0 20 XC
 2.0 30 XA
XB 20 2.1 20 XG
XE 50 2.2
 Market 40 XF

Order matching proceeds after the market ranks its orders. In a call market that happens
immediately following the market call. In continuous market it happens whenever a new
order arrives. The system first matches the highest-ranking buy and sell orders to each
other. If the buyer will pay at least as much the seller demands, the match will result in
a trade. If one order is smaller than the other, the smaller order will fill completely. The
system then will match the remainder of the larger order with the next highest-ranking

49

D2.1: Application requirements and specifications

order on the opposite side. If the first two orders are the same size, both will fill
completely. The system then will match the next highest-ranking buy to sell orders. The
process continues until the market arranges all possible trades.

In the previous example, assuming that the auction ends at 12:30, the system will
arrange the following orders:

1. The system first matches XD’s order to sell 10 at 1.98 with XF’s order to buy 40
at the market. The system fills XD’s order and leaves XF’s order with a remainder
of 30 to buy at the market.

2. System then matches XF’s remainder of 30 with XH’s order to sell 60 at 2.0. XH’s
order is coming next because it has the highest precedence on the sell side and
now XH’s order remains unfilled 30 at 2.0.

3. The system then will match XH’s 30 with XG’s order to buy 20 at 2.0. This match
fills XG and leave XH with a remainder of 10 at 2.0.

4. System continues with XH’s remainder of 10 with XA’s order to buy 30 for 2.0.
This match fills the remainder of XH and leaves XA with a remainder of 20 to buy
for 2.0.

The next match does not result in a trade. XA’s remainder of 20 to buy for 2.0 cannot
trade with XB’s order to sell 20 for 2.1 because XA will not pay as much as XB demands.
The following table (Table 10) summarizes the trades (left) and presents the resulting
order book (right) with the unfilled orders. In case that market now started continuous
trading, the market quote (BBO) would be 2.0 bid for 40, 20 offered at 2.1. Continuous
markets always have a spread between best bid and the best offer. If they did not, a
trade would result.

Table 10 Summary of trades (left) and resulting order book (right)

SELLERS BUYERS
Trader Size Price Size Trader
 1.98 70 XK
 2.0 20 XC
 2.0 20 XA
XB 20 2.1
XE 50 2.2

Match Seller Buyer Quantity
1 XD XF 10
2 XH XF 30
3 XH XG 20
4 XH XA 10

Total 70

Single-price auctions are very common and used by most continuous order-driven stock
markets, which open their trading sessions with a single price call market auction. In a
single price auction, all trades take place at the same market clearing price. The last
match that leads to a feasible trade determines the clearing price. If buy and sell orders
in this match specify the same price, that price must be the market-clearing price.
Matching by price priority ensures that this market-clearing price is also feasible for all
previously matched orders. If the buy and sell orders in the last feasible trade specify
different prices, the buy order will bid higher price than the sell order offers. The market
can clear at either of these two prices or at any price between them. In the previous

50

D2.1: Application requirements and specifications

example, the last feasible trade is between XH and XA so the market-clearing price is
2.0.

The single auction clears at the price where supply equals demands. The orders in the
limit (order) book determine the supply and demand schedules. The supply schedule
lists the total volume that sellers offer at each price. The demand schedule lists the total
volume that buyers want at each price. At prices below the clearing price, there is excess
demand because buyers want to buy more than sellers offer. Likewise, at prices above
the clearing price, there is excess supply because sellers offer more than buyers want.
These schedules determine how much the market can trade at any given price. Single-
price auctions maximize the volume of trade by setting the clearing price where supply
equals demand. For our previous example, the supply and demand schedules presented
in Table 11.

Table 11 Example of supply and demand schedules

SELLERS BUYERS
Supply

Schedule
Total Size
at Price

Price Total Size
at Price

Demand
Schedule

Excess
Demand
Schedule

10 10 1.98 70 180 170
70 60 2.0 50 110 40
90 20 2.1 20 60 -30
140 50 2.2 40 -10
140 Any higher 40 40 -10

In order to construct the above table, first we sum the total size bid or offered at each
price. In our example the only sum we have to make is that of buy side where XA and
XC demand 50 at the price of 2.0. Next, sum these quantities across prices in order of
decreasing price priority. Sum the supply schedule from lowest price to highest price and
sum the demand schedule in opposite direction. To compute the excess demand
schedule, subtract the supply schedule from the demand schedule at every price. The
following figure (Figure 14) displays the two schedules and the crossed value at the
market-clearing price of 2.0.

 Figure 14 Demand and Supply schedule: The crossed value

51

D2.1: Application requirements and specifications

 Pre-trade system – Risk valuation

When an option trade is made between a buyer and a seller, the seller has made an
obligation to buy or sell the underlying at the strike price at some time in the future. The
buyer has the right to sell or buy the underlying at the strike price at some time in the
future. In the case of a forward trade, both the buyer and the seller make an obligation
to buy or to sell the underlying at some pre-determined price at some time in the future.
One of the principal functions of a clearing house is to guarantee that all contracts
traded will be honored21. This means that the clearing house becomes the counterparty
in all transactions. This means that buyers and sellers of derivatives acquire rights and
obligations with respect to the clearing house, not to the original counterparty (Figure
15).

Buyer Seller

Buyer Seller

Clearing house

becomes

Figure 15 Rights and Obligations

This guarantee function eliminates any questions about the creditworthiness of the
original counterparty, or the ability to fulfil his or her commitments. The clearing house
guarantees all transactions. All market participants must have complete confidence in
the ability of the clearing house to guarantee fulfilment of all obligations. Confidence is
based on the existence of three main aspects: membership criteria, the margin system
and the capital resources of the clearing house, including risk insurance.

21 Source: [ATHEX Corporate Document, Restricted] Κανονισμός Εκκαθάρισης Συναλλαγών Επί
Κινητών Αξιών σε Λογιστική Μορφή, Ιανουάριος 2015

52

D2.1: Application requirements and specifications

The clearing house is taking the risk that a participant - a member or a client - may fail
to fulfil his obligations after an unfavorable change in the price of the underlying security.
If this happens, the clearing house is obliged to neutralize the position of the failing
participant. This means that the clearing house must repurchase written22 positions and
resell held23 positions. This may be at prices that far exceed those in effect when the
participant took his positions.

In order to guard the clearing house against losses in such cases, each participant having
an obligation has to pledge collateral. This collateral is pledged to a bank - either directly
or indirectly via a member. The collateral can be cash, stocks, bonds or other financial
instruments that are acceptable as collateral. In most cases, only a certain percentage
of the market value is accepted as collateral. This collateral may be taken over by the
clearing house if the participant fails to fulfil his obligations24.

The amount of collateral that has to be pledged is called “margin requirement” or just
“margin”. The margin requirement should be the cost of immediately neutralizing an
account. This should in theory be the negative market value of the account. However,
an account cannot normally be closed at the instant the participant defaults and at the
prevailing market prices. It can take time to neutralize the account, and the value of the
account can change during this period. The purpose of a margin requirement system is
to calculate the “true” margin requirement for each account, which should equal the
maximal possible cost for neutralizing the account, according to a number of
assumptions. The margin requirements should not be too small, since the clearing house
may then lose money. Neither should they be too big, since this may discourage trading.
The procedure of calculating the margin requirements is called margin calculation25.
The sub system used for margin calculations within the Clearing System is called RIVA
(Risk Valuation) or Pre-Trade Risk System (PTRS).

Figure 16 below, illustrates the Risk Valuation system,

(1) taking initially Reference Data from the clearing system where dematerialized
securities reside and from the trading system. Reference Data include

• Markets Rules and Instruments from the trading system (named OASIS).
• Clearing Accounts, Positions & Collaterals from the clearing system

(Dematerialized Securities named SAT)
(2) receiving continuous Dynamic Data from the trading system. Dynamic Data

include Orders, Trades & Market Data from the trading system. During the trading
day as the system will constantly receive the market events from the matching

22 Written position: The number sold of a specific product (also called short)
23 Held Position: The number bought of a specific product (also called short)
24 Source: [ATHEX Corporate Document, Restricted] Αναδιάρθρωση Υπηρεσιών Εκκαθάρισης,
Διακανονισμού και Καταχώρησης στην Αγορά Αξιών ΧΑ - Σχεδιαζόμενες Αλλαγές στα
Πληροφοριακά Συστήματα ΟΑΣΗΣ και ΣΑΤ - Έκδοση 1.4 Αθήνα, Μάρτιος 2010
25 Source: [ATHEX Corporate Document, Restricted] Τhe Margining Subsystem Methodology
Guide

53

D2.1: Application requirements and specifications

engine such as the execution reports (orders and trades) and the market data
(last sale information, BBO, etc.).

(3) performing Risk Valuation, by evaluating the positions (production of vector
files) and the collaterals per clearing account. The Pre-Trade Risk Valuation
system will evaluate the investor’s portfolios (net long or short position) and will
compare the results against the credit limits set by the CCP and clearing firms.
Binomial, Black & Sholes evaluation models for the derivatives market are
invoked.

(4) producing Blocking Message when and if required –If a calculated value
exceeds the specified limit, the risk valuation system will send a message to the
matching engine in order to block the ordering for a specific clearing account.
The purpose of such limits is to enable clearing firms to prevent customers from
accumulating positions that exceed levels at which the clearing firm is financially
comfortable.

(5) More over and before the entry to the matching engine, the validation module
will examine the quantity or the value of individual orders and it will either accept
or reject it. The opposite happens either when the margin is increased or the
position risk is reduced.

(6) The almost real-time evaluation of the positions on derivative products triggered
by events like last sale of the underlying products will cause the recalculation of
the positions of every clearing account related to those specific products. Also
the mathematic formulas used for option’s evaluation like binomial and Black &
Soles require big processing power of the system. Low latency and high
performance should be the main characteristics of the risk valuation system.

54

D2.1: Application requirements and specifications

Figure 16 Pre-trade risk valuation

The basic algorithmic functions which are employed in this continuous process are the
following:

• Black And Scholes (standard) and/or specifically Black-76 model
• Binomial trees
• Vector file calculation

Risk Valuation formulas - When calculating margin requirements for options, Risk
Valuation (RIVA or Margining Subsystem) uses theoretical formulas for pricing options
in each valuation point. A number of different formulas exist; risk valuation uses the
Black&Scholes, Black -76 and binomial methods. In those methods, the price of an option
depends on the following:

• Underlying price – the price of the underlying in this valuation point.
• Strike price – the strike price of the option.
• Risk-free interest rate – is considered constant and is an input parameter.
• Volatility level.
• Time to expire for the option.
• Dividends – known or expected dividends for the underlying affects the value of

the option.

The following table (Table 12) shows which method Risk Valuation uses for different
types of options:

Table 12 Formulas for Option valuation

 Product Method

 American call based on spot prices

Standard Black&Scholes (year 1973)

 American put based on spot Binomial trees without dividends

 European opt based on future Black -76

Vector file production – Before explaining the contents and the role of a vector file,
certain definition are made below for the following: lead time, valuation interval,
valuation points and volatility.

Lead Time - The margin requirements are normally calculated once a day. It can take
time to neutralize a position, therefore it may not be possible to neutralize an account
at the moment the participant fails to provide the required collateral. As a result, there
is a lead time from the moment collateral has been provided until the clearing

55

D2.1: Application requirements and specifications

organization is able to close the participant's account. The length of the lead time
depends on how long it takes to discover that the participant has not provided enough
collateral, and how long it takes to neutralize the account.

Valuation interval - To determine the maximum neutralization cost for the account,
possible values of the account must be calculated for the duration of the lead time. Since
the value of the account is determined mainly by the price of the underlying security, it
is important to know how much this price may fluctuate during the lead time. Calculating
the possible prices of the underlying security results in a valuation interval. The size of
the valuation interval depends on the length of the lead time and the size of the historic
fluctuations in the price of the underlying security over such a period. Technically, the
size of the valuation interval is set as a risk parameter in the reference database. It is
normally given as a percentage of the last paid price for the underlying.

Example:
Assume that the valuation interval for an index is ±10 % of the closing index. Based on
a closing index level of 1200, the calculation would be as follows:

Upper limit: 1200 + (10 % x 1200) = 1320
Lower limit: 1200 - (10 % x 1200) = 1080

Therefore, risk valuation would calculate margins based on the premise that the index
will not go below 1080, or above 1320 during the time period (the lead time).

Valuation Points - The upper and lower limits of the valuation interval represent the
extreme movements allowed for the calculation. However, the risk profile of options is
such that the “worst case” cost of neutralizing a portfolio containing different options
and futures based on the same underlying value, can occur anywhere in the valuation
interval. Therefore, the valuation interval is divided into a number of valuation points,
where 31 is a typical value. The closing price of the market represents the mid-point,
and in case of 31 valuation points, it has 15 valuation points on either side of it. At each
valuation point, the cost of neutralizing the position is calculated, based on the value of
the underlying in this particular valuation point. The margin requirement will be the worst
case of the neutralizing cost of all the valuation points.

Volatility - The price of an option can also be strongly affected by changes in volatility.
The risk of changed volatility is taken into account by calculating the value of the
account, based not only on the current volatility, but also on a higher and a lower
volatility. The amount with which the volatility is increased or decreased is determined
by risk parameters. Thus, the neutralizing cost is calculated at each of the
valuation points for three different volatility levels. A typical valuation
interval therefore consists of 3 X 31 valuation points.

56

D2.1: Application requirements and specifications

Vector file – Τhe important result entity of risk valuation is the “vector file”. It is a file
consisting of series data that is shared by all positions in the series. The exact definition
is product dependent. For each contract that risk valuation handles, as many calculations
as possible are performed on an instrument basis, without using details from individual
positions. This data is calculated per instrument, valuation point and held or written
position. The main reasons for vector files are: 1) Computational efficiency and 2) The
need to distribute vector files externally, in order to enable members to replicate the
system and to calculate their own margins as well as those of their customers.

By adding position data to the vector file, we get the neutralizing cost in each valuation
point for a single position. The term “positional vector file” is used for this. Figure 17
below could represent a vector file.

Figure 17 A Vector-file example

This is a matrix and when we talk about points we mean one cell in the matrix. In one
dimension the underlying price is altered and in the other dimension the volatility. If this
instrument is not effected by volatility, i.e. Forwards or Futures, the values for the
different volatilities will be the same. There are two values in each column that
correspond to held and written positions (bid/ask differences). The components in the
vector file are multiplied by 100 because they are internally treated as integers, i.e. in
practice we have two decimals in the calculations.

Calculation of cells in the vector file, involves formulas of variant types depending on the
type of contracts: forwards, futures, options, stock lendings and whether it is a single or
cross-margining procedure. An indicative example for vector file calculations is found
below. The example is about the case of futures, where the cell calculation in the vector

57

D2.1: Application requirements and specifications

file is a linear calculation, while for options Black-76 and/or binomial algorithms are
invoked.

Example: Calculating a Vector file for futures26

Variables SP - Last paid price for the underlying (spot price).
P - Number of contracts in the portfolio

Instrument Data CM - Contract size. The number of instruments that defines one
contract for an instrument

Risk Parameters
uV Upward valuation interval. This represents, in percent, the

maximum increase in price for this underlying during the lead time.

dV Downward valuation interval. This represents, in percent, the

maximum decrease in price for this underlying during the lead time.
BAF Adjustment factor held. In order to reproduce the bid/ask spread,

an adjustment term is calculated by multiplying the spot price by this
factor. For calculations on bought contracts, the point values are
reduced by this adjustment term.

SAF Adjustment factor written. In order to reproduce the bid/ask

spread, an adjustment term is calculated by multiplying the spot price
by this factor. For calculations on sold contracts, the point values are
reduced by this adjustment term.

Margins RMB Required margin for bought contracts.
RMS Required margin for sold contracts.

 PCMSPBAFSPV
RM d

u

B ⋅⋅⋅−
⋅

±= 













100100

PCMSPSAFSPV
RM d

u

S ⋅⋅⋅+
⋅

±= 













100100

The result is rounded to the nearest integer. The vector file is a simple linear function. The
valuation interval is divided in the same way as for forwards:

26 Source: [ATHEX Corporate Document, Restricted] Τhe Margining Subsystem Methodology
Guide

58

D2.1: Application requirements and specifications

Upper interval:

()subinterv
SP
n

Vu.=
−50 1

Lower interval:

()subinterv SP
n

Vd.=
−50 1

() ()

() ()

100100100100

100150
1

100100150
1

100
1

100150
1

100100150
1

100
2

100100100100
1

SPAFSPVSPAFSPV
n

SPAF
n

SPVSPVSPAF
n

SPVSPV
n

SPAF
n

SPVSPVSPAF
n

SPVSPV

SPAFSPVSPAFSPV

SuBu

SuuBuu

SddBdd

SdBd

⋅
+

⋅
+

⋅
−

⋅
+

⋅
+

−
−

⋅
+

⋅
−

−
−

⋅
+−

⋅⋅
⋅⋅
⋅⋅

⋅
+

−
+

⋅
−

⋅
−

−
+

⋅
−

⋅
+

⋅
−

⋅
−

⋅
−

We get a n × 2 matrix where bought futures are represented by the first column and sold futures
by the second. The two columns are duplicated, in order to have values for the different volatility
levels that are represented in the vector file.

1
2
3

1

Bid Ask Bid Ask Bid Ask
Bid Ask Bid Ask Bid Ask
Bid Ask Bid Ask Bid Ask

n Bid Ask Bid Ask Bid Ask
n Bid Ask Bid Ask Bid Ask

      

−

This matrix is the vector file for futures, and is used as a starting point for margin calculations for
all positions on this future.

With this vector file, there is no need to bother with data for the instrument. The following
calculation is performed in all points for the individual position.

RM VF i
VF i

P CMB i, (())
()

= ⋅
100

RM VF i
VF i

P CMS i, (())
()

= − ⋅ ⋅
100

RM VF iX i, (()) is the margin requirement if using the vector file value in point VF i() .

59

D2.1: Application requirements and specifications

By using these formulas, it is possible get a positional vector file for this position. This is used as
input for Cross Margining27.

6.2 Application-side QoS requirements

The financial applications are online-processing applications, both latency and rate
sensitive: Zero-latency requirement is of utmost importance for the matching engine
functions, while high-throughputs are also required as demand is growing and is not
stable along the day session. Message translation latency is also critical to reduce as it
affects user responsiveness as well as the ability to accommodate high frequency
trading.

 Main functional requirements

A list of ATM’s functional requirements is written up below, either in the form of general
requirements or specific to the trading system and the pre-trade risk valuation system.

General Functional Requirements

• Support of multilingual data fields, to be encoded using the UNICODE character
set (UTF8).

• The system must take into account the current hardware and network
infrastructure. The system must not affect at once the whole infrastructure. This
means that at the first phase of production, the system must be capable of
replacing the existing system without further changes at the firm’s site. Protocol
conversions at transport and application levels must be applied in order to
encounter these issues.

Trading-System Functional Requirements

• Support multiple markets with different procedures and trading rules.
• Ability to have different schedules (hours of trading) per market.
• Support of multiple currencies, i.e. allow securities trading in different currencies.
• Ability to compute stock exchange indices by taking into account securities from

different markets.

27 Cross Margining: The vast majority of accounts contain positions of 2 or more types of contracts
(e.g. 2 different strike options), where the risk of the position is the combined risk characteristics
of the different contracts registered to the account. Cross margining is when the margin
calculation takes into account the off-setting characteristics of the instruments

60

D2.1: Application requirements and specifications

• Support of Attribution and Anonymity Order Entry, i.e. the firm can specify if the
orders sent by its members are treated as anonymous or attributed as specified
by the firm.

• Support of multilevel transaction audit mechanism. Storage formats and access
Application Programming Interfaces (APIs) must facilitate data visualization and
transmit compliance.

• Support of different matching algorithms, i.e. techniques to allocate matched
quantities.

• Support of four types of interfaces: Order Entry, Market Data, Post-
Matching/Clearing, Control.

• Support of Financial Information eXchange (FIX) Protocol
(http://www.fixtradingcommunity.org/) semantics, i.e. message names & types,
field names & types, data types, and relationships between them.

Pre-Trade Functional Requirements

• Support of FIX standard as the primary interchange mechanism with remote
clients and Order Routing Systems (ORS).

• Wide variety of risk checks available for margin checks, daily quantity checks and
“fat finger” checks.

o Prevent the entry of orders that exceed appropriate pre-set credit or
capital thresholds in the aggregate for each customer and the broker-
dealer.

o Prevent the entry of erroneous orders, by rejecting orders that exceed
appropriate price or size parameters, on an order-by-order basis or over
a short period of time, or duplicative orders.

o Apply a set of Risk & Volatility Mitigation Controls as: Protection Points
for Market & Stop Orders, Maximum Order Size Protection, Cancel on
Disconnect Protection, etc.

• Centralized Drop Copy mechanism to send copies of execution reports,
heartbeats and acknowledgements, and trade bust messages through a FIX
protocol-based messaging interface28.

 Execution time

The financial application is an online processing type application, where transaction rate
and transaction latency matters. Total execution time for an order stream is not of
interest, though the execution time of each transaction unit which participates within the
overall latency of a transaction is critical.

28 Source: [Public available] FIX Adapted for STreaming(SM) FAST Protocol(SM),
http://www.fixtradingcommunity.org/pg/structure/tech-specs/fast-protocol

61

http://www.fixtradingcommunity.org/

D2.1: Application requirements and specifications

In our cases, current indicative execution times include:

• Matching Engine Execution time ~10ms
• B&S execution time: 0,061 msec
• Black 76 execution time: 0,063 msec
• Binomial execution time: 1,226 msec

The goal is to achieve significant reduction of the execution time for the abovementioned
steps plus the FIX translation and parsing time, at a level which enables the whole trade
cycle for a single order including the risk assessment steps to conclude within a real-
time context that is defined at the order below 1 μsec. However, final requirements will
be defined after a more thorough study on the profile of the involved algorithms and
processes.

 Latency

Latency requirement of a new ATM is one of the most important, hard, constraints.
Technology options must be leverage proven. Minimizing latency while maximizing
protection is the most challenging requirement related to matching engine and risk
valuation efficiency. Credit & Risk Controls must be implemented in hardware-
accelerated solutions at a fraction of the associated latency of software-only solutions,
thus somewhat eliminating any potential concern about speed versus managing risk that
we currently have. It is desirable to be able to support “near real time” availability
without manual intervention and transparent to the foreign applications.

Latency should be less than 1 millisecond

Of course, the latency can be measured within various points of the whole order flow
process. Speaking about sub-millisecond requirements, latency is measured at the
matching engine entry point up to the final response of the system about a matching
transaction, whether done (trade) or not. However, the requirement for sub-millisecond
order of delay remains, even at the level of the trader when its system is collocated at
trading system’s premises, and the transport application circuit functions (FIX gateway
and order routing) are performed in the same HPC environment with the matching
engine (i.e. an HPC cluster with InfiniBand connectivity).

Today’s single-processor infrastructure, and the overheads imposed by the processing
and transport of long messages, achieve an overall latency of 10 milliseconds, while the
matching latency is 3 milliseconds.

 Throughput

ATM’s throughput requirements are summarized below, at various levels of work
definition (order, session of one trader, trade day):

62

D2.1: Application requirements and specifications

• Number of Trades/Orders per day >= 100 million
• Session throughput: >= 1000 orders/sec
• System throughput: >= 100.000 orders/sec

Today, matching engine operations run in a single processor environment, which limits
scalability, exhibits an average system throughput of 300 orders/sec. Therefore, the
demanding requirements cannot be satisfied unless parallelization and acceleration is
achieved.

 Power & energy consumption

The project aims to adopt state of the art hardware technologies in order to gain a
technology edge, featuring high performance gains and scalability with low
consumptions patterns. The new ATM modules will be assessed in terms of power and
energy consumption. An analysis for the consumption patterns will be appropriate so
that the effect to actual budget performance can be accurately estimated. Efficiency will
be measured based on metrics such as:

• Transactions / Watt
• Transaction / Joule
• It is expected that power consumptions will increase in the new accelerated

environment; however the factor of transactions per energy unit should be highly
improved, exhibiting cost-efficiency at high performance levels.

 Programming effort

The new system must possess an open architecture that will enable easy placement of
modules when that is necessary. It is necessary to keep change management being
efficient to perform, as operational rules and new add-ons might be necessary; critical
components of the systems such as the Matching Engine and the Pre-Trade risk valuation
should be designed to behave as service boxes, providing their services transparently to
the rest components of the ATM. Familiar open software communication structures will
be utilized so that not specialized resources will be necessary for other forthcoming
adaptation that might take place.

Software architecture should be modular, flexible and scalable adapting modern massive
parallelism technologies using hardware accelerators for heavy duty tasks. Specifically,
software processing will rely on modern cost effective hardware customization
technologies of FPGAs, huge and cheap “off-the-shelf” processing power of GPUs and
integrate them with new multicore CPUs. Only by adopting state of the art software and
hardware technologies, ATM can gain a technology edge, featuring high performance
gains and scalability with low consumptions patterns.

Obviously, the project requires adopting a modern software development environment
suitable to reach the maximum hardware efficiency suitable for both client & server

63

D2.1: Application requirements and specifications

applications. The environment must cover two basic requirements. A) A modern
Integrated Development Environment supporting the full Software Life Cycle and B)
Offer a development sound methodology for the software administration. Among the
required characteristics are: Version Control, Professional Profile & Debugging
applications, OS Independence, etc.

Upon this environment, flexibility and cost efficiency should be assessed in terms of
#(man-effort hours) multiplied by #(hourly rates) for each personnel category. Achieving
high levels of abstractions at the programmer’s level, will not ask for high expertise and
specialized skills into developing efficiently, high performance and scalable algorithms
and processing modules in parallel environments, as accelerating farms resources will
take over this responsibility and it will only require the programmer’s lines to invoke
these resources in a proper way for the necessary computations. Not any current
indicator is existing to quantify this requirement. However, the resulting efficiency will
be measured in various experiments to show the estimated resources in terms of time
and money.

 Cost efficiency

Α significant goal is related to the financial benefits that is achieved after the deployment
of the new ATM based on modern accelerating components. Financial analysis should
quantify:

• The risk costs today and the cost benefits by reducing the level of risk exposure
• The investment costs for the purchasing new technologies that will be required

and for extra developments
• The difference into operating costs which are due to changes into maintenance

costs, programming efforts for operation/support/maintenance, energy
consumption patterns.

Different ICT infrastructure versions should be assessed, but the criterion should
incorporate not only the volume of processing that is being achieved within a certain
operation expenditure limit, but also all financial parameters, including financial gains,
investment costs and human resources costs, which will be necessary and affected from
the new technology.

6.3 Datacenter-side requirements

Data center requirements are not hard. Application instances will first run onto
Neurocom’s machines with realistic datasets before migrating them onto partners’
infrastructures for the final assessment. ΑΤΜ will be supported by a modular, flexible
and scalable architecture adapting modern massive parallelism technologies using
hardware accelerators for heavy duty tasks. Specifically, it needs to adopt modern cost
effective hardware customization technologies of FPGAs, huge and cheap “off-the-shelf”
processing power of GPUs and to integrate them with new multicore CPUs.

64

D2.1: Application requirements and specifications

A view of data-center resource requirements for the current operations can be seen in
the following table.

Table 13 An example of data-center resources required for application execution

Resource (for project duration) Total ATM
(one matching and two
communication servers)

Computing resource (Core Hours per year) 560.000 1720
(35 for matching)

Persistent storage (TB) 186 (2x93) 0,922
(0,59 for matching)

Data to be backed up (TB/month) 270 5,12
(1,02 for matching)

Amount of Data to be transferred to
computing Centre or (TB/month)

 0,092
(0,08 for matching)

Memory (GB)

2.240 76
(12 for matching)

Power consumption (KW) 137,6 0,51
(0,23 for matching)

6.4 Motivation for application acceleration

The rapid, concurrent change in financial markets and technology is putting pressure on
firms and Exchanges in a variety of ways. But rather than view technological change as
a problem, agile organizations are turning to technology as a source of competitive
advantage; the field programmable gate arrays (FPGAs), graphical processing units
(GPUs), microwaves, and cloud computing highlighted are delivering edges in speed and
flexibility. For example, the application of GPUs brings order-of-magnitude performance
increases for compute-intensive trading and risk management applications, and similar
cost savings over conventional computing grids. This performance increase allows for
better assessment of trade ideas and superior quantitative research in pre-trade area.
On the other hand, an FPGA can be programmed to perform many tasks in parallel
offering the ability to have many, many instructions that can be carried out in a single
clock cycle, which accounts for the speed advantage. FPGAs excel at simple data
transformation operating directly on a physical electronic signal as it comes through a
cable on a server. This simply means that server can consume data as fast is delivered
(link speed).

The main arguments supporting the acceleration of various components within ATM
application are related to business facts and operational objectives.

a. The core trading functions need to feature the smallest latency possible, so that
high speed trading can be supported. This also adds to stock market
competitiveness and sustainability. Trading at high frequencies needs sub-
millisecond latency at the matching engine, in order to server the order streams

65

D2.1: Application requirements and specifications

as well as high speed updating in order to reliably update high speed trader
systems. Scaling becomes also important, in order for ATHEX to consider its
position in the future, towards addressing the needs of multiple markets in its
geographical area. In that context, re-engineering the trading systems focuses
towards supporting radical increase of order volumes and rates, as well as,
increase of numbers of external interfaces, actors, traders and market viewers.

b. And as the trade cycle time is shortened because of improved architectures and
powerful implementations (including the accelerated matching engine
procedures), the more difficult it gets for Pre-trade risk calculations to complete
their results in the case of derivatives. Pre-trade risk calculation needs to be
accelerated enough, so that to be able to in-time block asynchronously risky
transactions. Now, and for the derivatives, such ability is not achieved, and the
need to speedup risk calculation and to pro—actively take measures becomes
obvious. From the business point of view, the stock exchange market
organization, keeping the role with the clearing obligation, needs to settle
efficiently any risks sourced by derivatives (financial or commodities). This is not
possible under current infrastructure and conditions, and becomes even harder
to achieve within an accelerated trading environment.

6.5 Tasks suitable for acceleration

The tasks of the application that can be accelerated are highlighted below:

a. FIX message parsing/validate/transform/format: FIX protocol is text based
variable length application protocol designed mainly for financial applications.
Due to its textual nature, it requires parsing before the data will be used and
formatting before data send to the network. Parsing and formatting are
inherently sequential procedures and can slow down the whole process.

b. The FAST (Fix Adapted for STreaming) protocol was designed as a way to reduce
the bandwidth and network-latency required to distribute market data without
incurring excessive CPU costs. The protocol defines various fields and operators
which are used to identify specific stocks and their pricing. An important aspect
of FAST is its compression mechanism which reduces bandwidth, however,
introduces significant CPU overhead. In fact, decoding of FAST represents a
major bottleneck which makes it particular interesting for offloading to an FPGA.

c. Computation of Auction Price: Auction of a board can be scheduled to occur
during trading session but can also happen under extreme market conditions
(volatility out of range). Auction can be applied to groups of instruments or
atomically to one instrument (volatility interruption mechanism). It is important
to be able to compute auction prices for all instruments at the same time in order
not to lag when changing from auction to continuous trading.

d. Indices. The computation of market indices is real time process and can
negatively affect the matching engine by stealing processing time.

e. Security counters (Volume, # trades, High, Low, …): Every trade produced by
the matching engine creates a number of collateral computations on a number
of counters concerning information about the securities participated in the trade.

66

D2.1: Application requirements and specifications

f. Market indicators: Market indicators visualize aspects of the market. Similarly
with indices are real time computations based on the trades. These computations
must not steal processing time and slow down the speed of matching engine.

g. Continuous Automatic Matching Model (CAMM): In case we do not have STOP on
different symbol orders (GPU/FPGA). Continuous trading is the most demanding
processing phase in exchange. Its speed specifies the efficiency of matching
engine and if it can be fulfil the needs of HFT (High Frequency Trading)

h. Computation of Close Price: Computation of Close Price can be considered as a
case of auction price computation.

i. Credit Control at Pre-Trade module: Main benefits include the ability to block
orders for derivatives prior to their execution, based on the capability to complete
the execution of risk calculation, having achieved acceleration of Black & Scholes,
binomial and/or vector files calculation (RIVA methodology).

6.6 Summary

The current environment for the financial services in ATHEX is considered poor with
certain limitations. Therefore, the most that the new components can provide in terms
of latency, throughput and energy efficiency is a benefit. Limitations in latency will affect
the real time achievable risk checks at the pre-trade phase. Throughput limitations would
affect the market sizes which can be efficiently services. Both factors are of extreme
importance towards ATHEX becoming a highly competent financial-services provider in
the area. It is helpful enough the fact that normal orders are all enabling parallelized
processing within the trading system operations.

The level of achievement in respect to latency might be limited by the limits of
parallelization, as imposed by certain combinatory orders – now less than 10% of the
total orders. However, by reducing the level of participation (or by even eliminating their
presence at all) into the traffic of orders, one can maximize the benefits of the foreseen
implementation.

Table 14 Financial applications summary table

Requirement Low Average High

Latency (us) 10000 1000 500

Throughput (orders/second) 500 50.000 100.000

Power consumption (W) - - -

67

D2.1: Application requirements and specifications

High throughputs will exploit parallelism which will increase power demands in
comparison to existing power consumptions. However, increase of power needs will be
accompanied with a remarkable growth of performance and abilities. Another important
benefit is related to the fact that CPU-intensive roles and very-low latency transactions
processing will be assigned to appropriate components which will take care for the
performance; hence, as demand will grow, programmer’s efforts and concerns will
concentrate onto their best integration rather than on continuous development and re-
engineering of their applications.

Considering more futuristic market conditions, especially in highly volatile markets such
as energy markets and after wider merging of activities and international cooperation,
requirements will become even more demanding, as indicated by the Table below:

Table 10 Financial applications summary table indicating future requirements

Requirement Metric

Latency (us) 1

Throughput (orders/second) 10.000.000

Power consumption (W) Same as today

68

D2.1: Application requirements and specifications

7 Transactional-analytics applications

7.1 Application description & functional requirements

Databases are a central component at any current information system. This means that
the component most frequently found in a data center is precisely the database. It turns
out also to be one of the most computationally intensive applications as well. This means
that its efficiency is key to increase the efficiency of datacenters.

In the database world, traditionally, two workloads have been identified: On Line
Transactional Processing (OLTP) and On Line Analytical Processing (OLAP). OLTP lies in
the workload received by operational databases that include a high fraction of updates
and consists of mainly of short queries and updates. The OLAP workload is quite different
from OLTP. It consists of large queries traversing millions to billions of rows. OLAP
systems do not have updates, although they have a load phase to introduce the data
from operational systems to be analyzed.

Databases so far has been centralized systems with an inter-woven code covering the
different functionalities, query processing, storage management, and transactional
processing. However, this monolithic design resulted in systems that could not scale out
and was difficult to make databases to scale up. In fact, only IBM DB2 managed to scale
up to large levels in the IBM zeta mainframes.

With the advent of NewSQL, a wave of new solutions have been proposed to scale out
transactional databases. Out of all them, the only solution that can scale today to very
large levels (100s to 1000s of nodes) is LeanXcale. The main reason is that LeanXcale
has conceived an innovation that enables to scale-out transactional processing in a linear
fashion. With a scale-out transactional processing, scaling out query processing and
storage management is relatively accessible.

Databases have been possibly the only software systems where benchmarking has been
used systematically to compare the different systems available in the market. The
Transaction Processing Council (TPC) was founded to create, evolve and certify such
benchmarking processes. There are different benchmarks for different kinds of systems.
The two most relevant are TPC-C29 for OLTP systems and TPC-H30 for OLAP systems.

More recently, database systems are emerging with combined capabilities enabling them
to satisfy a hybrid workload for OLTP and OLAP. LeanXcale is one of such database
systems. There is currently no benchmark available at TPC for hybrid workloads, but
there is an initiatives to provide such a benchmark, called CH-Benchmark31. It combines
TPC-C and TPC-H taking advantage that they share the use case and most of the tables.

29 Source: [Online Available:] http://www.tpc.org/tpcc
30 Source: [Online Available:] http://www.tpc.org/tpch/
31 Benchmarking & Simulation Florian Funke, Alfons Kemper, Thomas Neumann. Benchmarking
Hybrid OLTP&OLAP Database Systems. pp. 320-409. BTW. 2011.

69

D2.1: Application requirements and specifications

 TPC-C

TPC-C as aforementioned is a benchmark for OLTP workloads. The benchmark has been
modeled after a wholesale parts supplier that operates out of a number of warehouses
and their associated sales districts. The benchmark scaling is performed keeping some
invariants. Each warehouse supplies ten districts, and each district serves three thousand
customers.

Figure 18 TPC-C Scaling

The database schema of TPC-C is depicted in Figure 19. The figure also depicts the
relative cardinalities of the tables for the scaling factor. W stands for the number of the
warehouses that is how the load is scaled.

Figure 19 TPC-C Schema

70

D2.1: Application requirements and specifications

The application executes five kinds of transactions:

• New-order: enter a new order from a customer.
• Payment: update customer balance to reflect a payment.
• Delivery: deliver orders (done as a batch transaction).
• Order-status: retrieve status of customer’s most recent order.
• Stock-level: monitor warehouse inventory.

The two most frequent transactions are new-order and payment. New orders contain 10
items on average. 10% of the new orders require getting items from more than a
warehouse. This avoids trivial sharding solutions in which a sharded database instance
simple serves the transactions related to a subset of warehouses. The actual transaction
mix is shown in Figure 20. The Payment transaction records the payment from a
customer. Both new-order and payment transactions update a row for the data
warehouse. This is a source of write-write conflicts if transactions run for too long (when
they run for longer than 0.5 seconds conflicts become very frequent). The delivery
transaction is a prototypical transaction for doing batch processing, it processes a batch
of 10 orders for delivery. The order-status transaction checks the status of the most
recent order performed by a particular customer. Finally, stock-level is a relatively heavy
read-only transaction that queries the system for potential supply shortages by checking
the level of stock at the local warehouse.

Figure 20 TPC-C Transaction Mix

The concurrency level is scaled also based on the number of warehouses. Basically, there
are ten terminals per warehouse submitting transactions concurrently. They have a cycle
in which they have a keying time, they submit the query and then they have a thinking
time before cycling again.

71

D2.1: Application requirements and specifications

The specified times are:

 Key Time Thinking Time

New Order 18 12

Payment 3 12

Order-status 2 10

Delivery 2 5

Stock-level 2 5

 TPC-H

TPC-H is a benchmark for analytical workloads. The benchmark has not been designed
to model a particular industry or particular business segment. Instead, it models a
business that sells/distributes a product worldwide. The benchmark distills the
stereotypical analytical queries performed stressing the database query engine in
different dimensions common across all industrial sectors. The queries answer business
questions around these issues. There are in total 22 queries that provide answers to the
following classes of business analysis:

• Pricing and promotions.
• Supply and demand management.
• Profit and revenue management.
• Customer satisfaction.
• Market share.
• Shipping management.

The database schema of the database is illustrated in Figure 21.

72

D2.1: Application requirements and specifications

Figure 21 TPC-H Database Schema

The scaling of TPC-H is depicted in Figure 22. It is based on a “Scaling Factor” (SF) that
can be chosen out of these values: 1, 10, 30, 100, 300, 1000, 3000, 10,000, 30,000,
100,000. Roughly each unit in this factor corresponds to 1 GB of data, therefore going
from 1 GB to 100 TB.

Figure 22 Scaling of TPC-H

73

D2.1: Application requirements and specifications

The benchmark measures the response time of the 22 different queries for a given
number of concurrent clients that cycle over the whole set of queries. The clients do not
have any waiting time between query submissions. The benchmark also measures the
loading time of the data.

 CH-Benchmark

TPC-C and TPC-H focus on two extremes of a spectrum. TPC-C focuses on OLTP high
update workloads. TPC-H focuses on OLAP workloads with heavy queries. However,
there is a lack for a benchmark that can evaluate systems with both capabilities, that is,
the capability of answering OLAP queries over operational data. The proposal of CH-
Benchmark aims at covering this gap. Since LeanXcale aims at provide this functionality
it will also be an important benchmark to measure the improvements brought by the
acceleration by VINEYARD into LeanXcale and the business applications running on top
of it.

Figure 23 Spectrum of TPC benchmarks and positioning of CH-Benchmark

Since TPC-C and TPC-H have significant similarities and both do an excellent job at
evaluating their target workloads, CH-Benchmark proposes to combine both of them.
The identified similarities are that they model businesses related to product distribution,
and therefore deal with orders and customers, as well as the details of orders such as
items and order lines. The differences lie in some tables that exist in one of the
benchmark, but not in the other and vice-versa.

The CH-Benchmark introduces all tables from both benchmarks and combines them in a
single schema. The schema and the scaling factor is shown in Figure 24. The scaling

74

D2.1: Application requirements and specifications

factor has been unified by relaying on the TPC-C scaling factor, the number of
warehouses.

Figure 24 CH-Benchmark database schema

The injected load is the combination of injecting the target TPC-C load plus a number of
TPC-H clients that cycle over the adapted TPC-H queries.

The benchmark still needs to be improved in some aspects. LeanXcale team is working
in that direction and has already proposed some improvements in [Pereira].

 Micro-benchmarking

In order to be able to measure more exhaustively the benefits of the acceleration brought
by VINEYARD into some functions of LeanXcale, some micro-benchmarks will be
performed to evaluate some of the accelerated functions.

One of the expected functions to be accelerated is conflict management. For this, a
micro-benchmark will be created. The micro-benchmark will only evaluate the subset of
components involved in conflict management, namely the conflict managers and the
local transactional manager.

75

D2.1: Application requirements and specifications

Other functions that we aim to accelerate with VINEYARD are compression and
encryption, very important functions for data management that are CPU intensive and
for which acceleration can bring significant improvements. The compression is expected
to be applied at the storage engine level to store data pages in a compressed manner
and reduce the IO bandwidth. Different kinds of compression techniques will be
considered among Lempel-Ziv-like algorithms, Tries, dictionary encoding and Huffman
compression.

7.2 Application-side QoS requirements

 Execution time

Since all benchmarks are related to online applications, the execution time is not
relevant. There is one exception that is the loading of the database in the case of TPC-
H and CH-Benchmark. This is a job that is executed and for which the main metric of
interest is the execution time, that is, the time it takes from the start of the loading
processing till its completion.

 Latency

One of the most relevant metrics of database systems is the latency of queries. The
latency measures the time it takes since the application submits the query till it receives
the answer to the query. The different benchmarks exercise very different workloads
and therefore, have very different values on the latency from milliseconds to minutes.
In the case of TPC-C there are SLAs established over the latency. The limit in latency for
the different transactions is summarized in Table 15.

Table 15 SLA for latencies in TPC-C

 Latency (seconds)

New Order 5

Payment 5

Order-status 5

Delivery 5

Stock-level 20

76

D2.1: Application requirements and specifications

This SLA is imposed over the 90-th percentile of the different transactions. For TPC-H,
the latency of queries is measured in the power test, in which a single client executes
one by one the queries.

 Throughput

The throughput is another of the major metrics for database management systems. It
can measure transactions per unit of time (in TPC-C, and CH-Benchmark) or queries per
unit of time (in TPC-H, CH-Benchmark and YSCB). In the case of TPC-H and YCSB there
is no SLA over the throughput. However, in TPC-C the throughput should lie between 9
tpmC (new order transactions per minute) and 12.86 tpmC per warehouse.

In TPC-H the throughput is evaluated in the throughput test in which a number of
concurrent clients execute depending on the scaling factor as reported in Table 16.

Table 16 TPC-H Throughput test

SF #Concurrent Clients

1 2

10 3

30 4

100 5

300 6

1000 7

3000 8

10000 9

30000 10

100000 11

The throughput metric of TPC-H is TPC-H Composite Query-per-Hour Metric (QphH).

77

D2.1: Application requirements and specifications

7.3 Datacenter-side requirements

 Power efficiency

For the power consumption, both TPC-C and TPC-H provide a standardized method to
measure it. The specification for the power consumption benchmarking is captured in
TPC-Energy. For TPC-C the unit of power efficiency is Watts/KtpmC, that is, Watts per
throughput. For TPC-H the unit of power efficiency is Watts/KQphH, power consumed
per throughput.

TPC-Energy aims at extending TPC benchmarks with a power efficiency metric. In most
cases, the benchmarks are online systems and therefore, the metrics for measuring the
outcome of the benchmarks are throughput for a given configuration. In particular, for
LeanXcale, since it is an online database, all relevant benchmarks.

 Cost efficiency

Both TPC-C and TPC-H provide a metric for cost efficiency. In both cases, the metric
computes the cost over three years of hardware, software license and support. For TPC-
C the cost efficiency metric is TPC-C Price/Performance ($/tpmC). For the TPC-H the cost
metric is TPC-H Price/Performance ($/QphH).

7.4 Motivation for application acceleration

Data management is one of the pervasive functions in any data center. Most business
applications rely on an operational and/or analytical database to perform their function.
This means that a high fraction of the power consumed at a data center is consumed by
the database. Optimizing the power efficiency of databases will result in a very significant
reduction of energy consumption not able to be achieved in other application domains.

7.5 Tasks suitable for acceleration

Within the LeanXcale database there are several functional blocks depicted in Figure 25.
The major functions are:

a. Transactional manager. It is in charge of providing data consistency
guarantees in the advent of failures and concurrent access to the database.

b. Storage engine. It is in charge of storing data in persistent storage, provide
caching and basic functions for managing data such as insert, update, delete,
search the value associated to a key, scan a range of primary keys, and even
apply a filter to do a selection during a scan of range keys and/or perform a
project of the columns to be recovered.

78

D2.1: Application requirements and specifications

c. Query engine. It is in charge of interpreting queries and executing them by
interacting with the storage engine. Transactional semantics is enforced by
interacting with the transactional manager.

Figure 25 LeanXcale Functional Blocks

Out of these three functions we have examined which are the ones more suitable for
acceleration. We discuss briefly the analysis performed for each of the functions. The
transactional engine performs several tasks summarized in Figure 26.

Figure 26 LeanXcale Transactional Functions

• Conflict management. Checks and detects write-write conflicts between
concurrent transactions.

• Logging. Stores in persistent storage the updates to guarantee durability of
transactions.

79

D2.1: Application requirements and specifications

• Commit sequencer. It is in charge of providing commit timestamps for
committing new transactions.

• Snapshot server. It is in charge of determining what the current snapshot is
by observing what transactions are readable and durable.

• Local Transactional Management. It takes care of the lifecycle of
transactions interacting with all other transactional components.

The task that seems more suitable for acceleration is the conflict management. It
requires processing messages with many conflicts and then perform the conflict check.
Conflict managers basically receive three kinds of messages. The first one is related to
conflict checking. Each message contains a batch of hashed keys. They are checked in
a hash table for potential conflicts with updates over the same key by a concurrent
transaction. Since all data is of fixed length and a repetitive task that can be performed
in parallel, it is quite suitable for FPGA acceleration.

Another task that can be potentially accelerated is the snapshot server. It requires
processing messages and combine contiguous intervals. It keeps internally, the current
snapshot that is the commit timestamp for which all previous commit timestamps have
been reported (either as durable & readable or discarded), and thus, there are not gaps,
and a set of commit timestamp intervals. The snapshot server receives from local
transaction managers intervals of commit timestamps. It has to find which interval is
consecutive with the current snapshot to advance it. In order to reduce memory
utilization and advance work it can also merge contiguous intervals as a single larger
interval. This task also uses data of uniform types and lengths and can be performed in
parallel and therefore seems suitable for FPGA acceleration.

The storage engine is in charge of the following tasks:

• Perform Inserts, Gets, Updates and Deletes over the data based on the primary
key.

• Perform range queries applying projections and/or selections.
• Store data persistently, possibly compressed and/or encrypted.

The storage engine offers two really good opportunities for acceleration. One is the
compression and another is encryption. A very important fact about LeanXcale storage
engine, KiVi, is that the writing can be done asynchronously to the persistent media with
an arbitrary delay. This means that pages can get frozen to be written to disk and in
background being compressed and/or encrypted by the acceleration framework without
consuming any host CPU and at a high rate due to the inherent parallel processing of
the accelerators.

Compression is not yet implemented in LeanXcale due to the CPU overhead. Now with
FPGA acceleration it seems that it will become affordable since it will not consume host
CPU. For this purpose different kinds of compression will be implemented and
accelerated by means of the VINEYARD acceleration framework. In particular, the
following kinds of compression will be tried: Lempel-Ziv family of algorithms, Trie trees,
Hoffman encoding, etc.

80

D2.1: Application requirements and specifications

The third function is query processing. Our initial thoughts were that analytical queries
can benefit from acceleration since they involve large volumes of data. Unfortunately,
some queries are ad-hoc, there are from time to time new queries deployed in an
exploitation system what requires to solve queries in a short period of time what is kind
of incompatible with FPGAs that take very long to get flashed. Also the processing with
GPUs has a relatively expensive process to be prepared. For this reason, query
processing has been, at least in a first stage, not considered for acceleration. We will
consider at a later stage some specific kinds of applications such as geographical
applications that require geographical queries that might exploit GPUs and image and
video processing that might also exploit GPU capacity.

Having said this, there is a function related to query processing that is the computation
of statistics that is required for optimizing queries. These statistics mainly compute the
histogram for each index. The statistics can also be computed in the background. This
task might also be suitable for acceleration and will also be considered for FPGA
acceleration.

7.6 Summary

Database management systems and the business applications running on top of them
are online applications with strict SLAs. There are some regular functionalities of a
database management system that can be accelerated and will be focus within
VINEYARD to accelerate such functions within LeanXcale such as conflict management.
There are some other functionalities nice to have such as compression and encryption
that are quite CPU intensive and being able to perform them through an accelerator
without consuming host CPU becomes an important incentive to use accelerators.

On the other hand, the new storage engine of LeanXcale database has a design that is
very appropriate to perform many functions without being in the critical path of the
response time to the client, what enables to perform these functions through the
accelerators. This will be another of the primary goals within vineyard.

We are considering new requirements not considered initially in the DoW to add new
functionality to LeanXcale to support encryption and compression that are two critical
functionalities not provided today by LeanXcale, that are very CPU eager, and that can
be accelerated with the VINEYARD framework.

81

D2.1: Application requirements and specifications

8 Cloud computing applications

Besides the three real-world applications, we are also going to demonstrate the
advantages of the VINEYARD framework in several widely-used cloud applications based
on widely-used programming frameworks such as Spark. In this chapter, we present the
type of cloud applications that will be studied and the main requirements of these
applications.

8.1 Application description & functional requirements

Cloud-computing applications can be divided into two broad categories as was described
in Section 2:

• Batch-processing applications (Offline): In this case, the applications
process high volumes of data that have been collected and stored in the data
centers. Usually there are several complicated processing that needs to be done
in the data. The main performance metric in these applications is the throughput
and the execution time. In this category fall several applications like:

o Data Analytics: In this case, massive amounts of data (Big Data) needs
to be processed in order to extract useful information. Typical applications
are text classification, book recommendations, and spyware detection. A
typical framework for the development of these application is the
Apache Mahoot framework.

o In-Memory Data Analytics: In these cases, the data are preferably
stored in the memory through Resilient Distributed Datasets (RDD).
Typical applications in this category are the applications that are based
on the Apache Spark.

o Graph Analytics: In this case belong applications that are mainly
working on parallel distributed graph processing. Typical Graph
applications are graphs of social networks and web graphs. The most
widely used framework for these applications is the
Apache GraphX framework.

• Streaming processing applications (Online or Real-time): In this case,
the applications process high volume of streaming data and usually the
processing that needs to be done in these cases is simpler than in the case of
batch processing applications. The main performance metric in these applications
is the latency (i.e. N-th percentile latency). In this category falls several
applications like:

o Data Caching: A typical framework for these applications is the
memcached framework that is used to cache data in memory.

o Data Serving: These applications are generally used of online services
that rely on NoSQL data stores. A typical framework is the Cassandra
framework.

82

D2.1: Application requirements and specifications

o Media Streaming: Media-streaming applications must be able to
sustain both high throughput and low-latency details. A typical application
that is used to run media streaming is the Nginx server.

o Web Search: The typical performance metric for web search is
throughput (searches/sec) and (low) latency.

o Web Serving: In this category belong all web-service applications
usually deployed by a web server, a cache server and a database server.

In VINEYARD, we plan to study the acceleration of the Spark framework since it is one
of the most widely-used framework for data analytics. Spark has been adopted widely
in recent years for big data analysis by providing a fault-tolerant, scalable and easy to
use in-memory abstraction. Specifically, Spark provides programmers with an application
programming interface centered on a data structure called the resilient distributed
dataset (RDD). RDD is a read-only multiset of data items distributed over a cluster of
machines, which is maintained in a fault-tolerant way. It was developed in response to
limitations in the MapReduce cluster computing framework, which forces a particular
linear dataflow structure on distributed programs. MapReduce programs read input data
from disk, map a function across the data, reduce the results of the map, and store
reduction results on disk. Spark's RDDs function as a working set for distributed
programs that offers restricted form of distributed shared memory. Therefore, the
latency of such applications, compared to Apache Hadoop, may be reduced by several
orders of magnitude.

When the user runs an action (like collect), a Graph is created and submitted to a
directed-acyclic-graph (DAG) scheduler. The DAG scheduler divides the operator graph
into (map and reduce) stages.

A stage is comprised of tasks based on partitions of the input data. The DAG scheduler
pipelines operators together to optimize the graph. The final result of a DAG scheduler
is a set of stages. The stages are passed on to the Task Scheduler. The task scheduler
launches tasks via a cluster manager. The Worker then executes the tasks for the task
processing as is depicted in Figure 27, below.

Figure 27 Spark framework

83

D2.1: Application requirements and specifications

Spark libraries cover 4 main categories of applications: machine learning, graph
computation, SQL query and streaming applications.

• Spark MLlib is Spark’s scalable machine learning library consisting of common
learning algorithms and utilities, including classification, regression, clustering,
collaborative filtering, dimensionality reduction, as well as underlying
optimization primitives.

• GraphX is a Spark API (Application Programming Interface) for graphs and graph-
parallel computation. At a high level, GraphX extends the Spark RDD by
introducing the Resilient Distributed Property Graph: a directed multi-graph with
properties attached to each vertex and edge. GraphX includes a growing
collection of graph algorithms and builders to simplify graph analytics tasks.

• Spark SQL provides the capability to expose the Spark datasets over JDBC API
and allow running the SQL like queries on Spark data using traditional business
intelligence (BI) and visualization tools.

• Spark Streaming can be used for processing the real-time streaming data. This
is based on micro batch style of computing and processing. It uses the DStream
which is basically a series of RDDs, to process the real-time data.

Figure 28 The Spark libraries

Several application using the Spark framework will be analyzed in order to find the
hotspot and the main bottlenecks. The main functions that are computational intensive
will be mapped to hardware acceleration units in order to speed up the total execution
time and to improve the throughput and the latency.

8.2 Application-side QoS requirements

Figure 29 depicts a classification of the cloud applications and typical frameworks that
are used for each application. For some applications, like data analytics and in-memory
analytics, the main metrics for the evaluation of the performance are the processing
throughput and completion time (CT). However, for other applications like data caching
and data serving, besides throughput, another main metric for performance evaluation
is latency. The figure shows also if the application is mainly CPU-intensive, memory
intensive, Disk I/O intensive or Network I/O intensive. Each of these application may
have specialized libraries for specific cloud applications.

84

D2.1: Application requirements and specifications

Figure 29 Classification of cloud applications and typical frameworks employed

In VINEYARD, we plan to target specifically the acceleration of cloud applications that
are mainly CPU-intensive and that can benefit most from the utilization of the hardware
accelerators.

 Throughput

The main metric for the evaluation of cloud-computing application is throughput.
Different metrics are used to measure the throughput based on the application
characteristics:

• The throughput can be measured as the number of processed requests per
second (RPS, in short) for online service workloads32.

• The number of operations per second (OPS, in short) is used to evaluate OLTP
workloads (OLTP refers to Online Transaction Processing).

• For data-analytics workloads, the throughput is measured as data processed
per second (DPS, in short). DPS is defined as the input-data size divided by the
total processing time. In comparison with metrics like the processed jobs or tasks
per time unit, DPS is much more relevant to the data processing capability of the
system which users concern.

32 Lei Wang et al. BigDataBench: a Big Data Benchmark Suite from Internet Services, 2014 IEEE
20th International Symposium on High Performance Computer Architecture (HPCA)

Cloud
Applications

Batch

Data Analytics Mahout

In-Memory
Analytics Spark Mlib

Graph
Analytics GraphX

On-line

Data Caching Memcached

Data Serving Cassandra

Media
Streaming Nginx

Web Search Solr, PageRank

Web Serving
Nginx-

Memcached-
MySQL

Throug. Latency CT

 





 

 

 

 

 

Application Example CPU Mem Disk Netw

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑

↑ ↑ ↑

↑ ↑ ↑

QoSMetrics
(non-functional)

Resources

85

D2.1: Application requirements and specifications

 Latency

Another major metric in the cloud-computing applications is latency. Latency refers to
the overall time it takes for the completion of a specific task/job. The latency is especially
crucial to applications that have to do with human interaction like web search. The typical
metric is the average latency for the completion of the tasks. However, average latencies
only give half the story. A more important metric is the N-th percentile latency.

N-th percentile latency refers to the percentage of measurements that experience a
specific threshold latency and above. If this percentage is high, then the system
experiences Longtail latencies. Longtail latencies occur when high percentiles begin
to have values that go well beyond the average and can be magnitudes greater than the
average. A 99th percentile latency of 30 ms means that every 1 in 100 requests
experience 30 ms of delay. For a high traffic website, this could mean that for a page
with 1 million page views per day then 10,000 of those page views experience the
significant delay that may affect the operations of the web page33.

The most typical metrics used for the N-th percentile latency are: 90th% latency, 95th%
latency and 99th% latency. For example, the requirement for the memcached
applications is 95th % latency of less than 300 μsec, as is shown in Figure 30 and Figure
31, below.

Figure 30 95th-percentile latency for memcached [Source: Kozyrakis34]

33 Who moved by 99-th percentile latency, https://engineering.linkedin.com/performance/who-
moved-my-99th-percentile-latency
34 Christos Kozyrakis, Resource Efficient Cloud Computing, IAP cloud computing workshop, 2013

86

D2.1: Application requirements and specifications

Figure 31 Queries-per-Second (QPS) versus Latency [Source: Kozyrakis34]

 Completion time (Total execution time)

The Completion time (or total execution time) refers to the overall execution time of the
applications. This is mainly used in applications like batch processing where the
application need to process a large file (i.e. Big Data analytics). The execution time takes
into account both the application code and the operating system time. To avoid
interference with other applications, the total execution time of a specific application
should be measured when only this application is running on the system. Alternatively,
if we care about the total execution time of a mix of applications (e.g. a benchmark with
data analytics, in-memory analytics, web serving, etc.) then we can measure the total
execution time to finish all the applications in the system.

8.3 Motivation for application acceleration

Spark is a programming framework that allows the fast implementation of big data
analytics applications in large distributed computing systems. Based on the Spark
libraries, different types of applications can be developed such as machine-learning,
computational graphs and database applications. Most of these applications such as
machine learning are very computationally intensive and much higher performance is
required by the applications users.

8.4 Tasks suitable for acceleration

In VINEYARD we will first explore if there are specific tasks in the Spark’s kernel that
could be offloaded to the accelerators. For example, Spark allows the compression of

87

D2.1: Application requirements and specifications

the datasets that are distributed to the nodes. The accelerators could be utilized in this
case to offload the processor from the computationally-intensive tasks of compression.

During workload characterization, we will also study the tasks of widely used applications
based on Spark and identify the most CPU-intensive tasks that could be accelerators. For
example, there are several machine learning applications based on Spark such as logistic
regression, K-means clustering, Support Vector Machines and Naïve Bayes with
computational intensive tasks that could offloaded to the accelerators.

8.5 Summary

Besides the three use-case scenarios from the applications partners, VINEYARD will also
study how widely-used programming frameworks for Big Data analytics, such as Spark,
can benefit the most from the efficient and transparent utilization of the hardware-
accelerator-based servers that will be developed in VINEYARD. Specifically, VINEYARD
aims to provide an integrated framework that will allow the speedup of the Spark
applications and the reduction of the energy-consumption by the efficient utilization of
the accelerators.

Most of the Spark applications that will be examined are batch processing applications
(e.g. machine learning applications). Therefore, there is not any strict requirement in
terms of latency or throughput. The main goal in this domain will be the speedup of the
completion time by at least an order of magnitude and the reduction of the energy
consumption at least by 20x.

88

	1 EXECUTIVE SUMMARY
	2 Introduction
	2.1 Goal of deliverable
	2.2 Audience
	2.3 Document structure

	3 Datacenter workloads and requirements
	3.1 Datacenter workload concepts and classification
	3.2 Datacenter application requirements
	3.2.1 Programming effort as a special application requirement

	3.3 Overview of VINEYARD applications

	4 Infrastructure-side requirements
	4.1 Application-side vs. infrastructure-side requirements
	4.2 Infrastructure-side requirements
	4.2.1 Infrastructure software stack
	4.2.2 Infrastructure-side metrics
	4.2.2.1 Requirements concerning datacenter vendors
	4.2.2.2 Requirements concerning datacenter operators
	4.2.2.3 Requirements concerning datacenter users

	4.3 Combined metrics

	5 Neurocomputing application
	5.1 Application description & functional requirements
	5.1.1 Abstract model description

	5.2 Application-side QoS requirements
	5.2.1 Latency
	5.2.2 Throughput
	5.2.3 Job execution time
	5.2.4 Programming effort

	5.3 Datacenter-side requirements
	5.3.1 Power and energy consumption

	5.4 Motivation for application acceleration
	5.5 Tasks suitable for acceleration
	5.6 Summary

	6 Financial applications
	6.1 Application description & functional requirements
	6.1.1 Overall purpose and scope
	6.1.2 Matching engine of rule-based order-driven markets
	6.1.3 Pre-trade system – Risk valuation

	6.2 Application-side QoS requirements
	6.2.1 Main functional requirements
	6.2.2 Execution time
	6.2.3 Latency
	6.2.4 Throughput
	6.2.5 Power & energy consumption
	6.2.6 Programming effort
	6.2.7 Cost efficiency

	6.3 Datacenter-side requirements
	6.4 Motivation for application acceleration
	6.5 Tasks suitable for acceleration
	6.6 Summary

	7 Transactional-analytics applications
	7.1 Application description & functional requirements
	7.1.1 TPC-C
	7.1.2 TPC-H
	7.1.3 CH-Benchmark
	7.1.4 Micro-benchmarking

	7.2 Application-side QoS requirements
	7.2.1 Execution time
	7.2.2 Latency
	7.2.3 Throughput

	7.3 Datacenter-side requirements
	7.3.1 Power efficiency
	7.3.2 Cost efficiency

	7.4 Motivation for application acceleration
	7.5 Tasks suitable for acceleration
	7.6 Summary

	8 Cloud computing applications
	8.1 Application description & functional requirements
	8.2 Application-side QoS requirements
	8.2.1 Throughput
	8.2.2 Latency
	8.2.3 Completion time (Total execution time)

	8.3 Motivation for application acceleration
	8.4 Tasks suitable for acceleration
	8.5 Summary

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

 /Arial-Black

 /Arial-BoldItalicMT

 /Arial-BoldMT

 /Arial-ItalicMT

 /ArialMT

 /ArialNarrow

 /ArialNarrow-Bold

 /ArialNarrow-BoldItalic

 /ArialNarrow-Italic

 /ArialUnicodeMS

 /Calibri-Light

 /Calibri-LightItalic

 /Cambria

 /Cambria-Bold

 /Cambria-BoldItalic

 /Cambria-Italic

 /CambriaMath

 /CourierNewPS-BoldItalicMT

 /CourierNewPS-BoldMT

 /CourierNewPS-ItalicMT

 /CourierNewPSMT

 /Garamond

 /Garamond-Bold

 /Garamond-Italic

 /Tahoma

 /Tahoma-Bold

 /TimesNewRomanPS-BoldItalicMT

 /TimesNewRomanPS-BoldMT

 /TimesNewRomanPS-ItalicMT

 /TimesNewRomanPSMT

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

