Spark acceleration on FPGAs: A use case on
machine learning in Pynq

Elias Koromilas, Ioannis Stamelos
Department of Electrical
and Computer Engineering,
National Technical University of Athens
Athens, Greece

Abstract—Spark is one of the most widely used frameworks
for data analytics. Spark allows fast development for several
applications like machine learning, graph computations, etc. In
this paper, we present Spynq: A framework for the efficient
deployment of data analytics on embedded systems that are
based on the heterogeneous MPSoC FPGA called Pynq. The
mapping of Spark on Pynq allows that fast deployment of
embedded and cyber-physical systems that are used in edge and
fog computing. The proposed platform is evaluated in a typical
machine learning application based on logistic regression. The
performance evaluation shows that the heterogeneous FPGA-
based MPSoC can achieve up to 11x speedup compared to the
execution time in the ARM cores and can reduce significantly
the development time of embedded and cyber-physical systems
on Spark applications.

I. INTRODUCTION

Emerging applications like cloud computing, big data an-
alytics, and IoTs require powerful systems that can pro-
cess large amounts of data without consuming high power.
Furthermore, these emerging applications require fast time-
to-market and reduced development times. To address the
large processing requirements of emerging applications, novel
architectures are required in the domain of high-performance
and energy-efficient processors.

Relying on Moore’s law, CPU technologies have scaled
in recent years through packing an increasing number of
transistors on chip, leading to higher performance. However,
on-chip clock frequencies were unable to follow this upward
trend due to strict power-budget constraints. Thus, a few years
ago a paradigm shift to multicore processors was adopted
as an alternative solution for overcoming the problem. With
multicore processors we could increase server performance
without increasing their clock frequency. Unfortunately, this
solution was also found not to scale well in the longer
term. The performance gains achieved by adding more cores
inside a CPU come at the cost of various, rapidly scaling
complexities: inter-core communication, memory coherency
and, most importantly, power consumption [1].

Therefore, the failure of Dennard’s scaling, to which the
shift to multicore chips is partially a response, may soon limit
multicore scaling just as single-core scaling has been curtailed
[2]. This issue has been identified in the literature as the dark
silicon era in which some of the areas in the chip are kept

Christoforos Kachris
Institute of Communication and
Computer Systems (ICCS/NTUA)
Athens, Greece

Dimitrios Soudris
Department of Electrical
and Computer Engineering,
National Technical University of Athens
Athens, Greece

powered down in order to comply with thermal constraints [3].
One way to address this problem is through the utilization of
hardware accelerators. Hardware accelerators can be used to
offload the processor, increase the total throughput and reduce
the energy consumption.

In this paper we present a framework for the seamlessly
utilization of hardware accelerators in heterogeneous SoCs that
are used to speedup the processing of Spark data analytics
applications.

The main contributions of this paper are the followings:

o An efficient framework for the seamlessly utilization of
hardware accelerators for Spark applications

e« An implementation to a highly heterogeneous all-
programmable MPSoC (Zynq) based on the Pynq frame-
work

o A performance evaluation for a use-case on machine
learning that shows how the proposed framework could
achieve up to 11x speedup compared to the ARM pro-
cessors in Zyng.

II. RELATED WORK

In the last few years, there are several efforts for the efficient
deployment of hardware accelerators for cloud computing.

In [4], a detailed survey on hardware accelerator for cloud
computing applications has been presented. They survey shows
both the programming framework that have been developed
for the efficient utilization of hardware accelerators and the
accelerators that have been developed for several applications
like machine learning, graph computation applications and
databases.

IBM has announced in 2016, the availability of SuperVes-
sel cloud, a development framework for the OpenPOWER
Foundation. SuperVessel has been developed by IBM Sys-
tems Labs and IBM Research based in Beijing. The goal
of the SuperVessel cloud is to deliver a virtual environment
for the development, testing and piloting of applications.
The SuperVessel cloud framework takes advantage of IBM
POWER 8 processors. Developers have access to Xilinx FPGA
accelerators which use IBMs Coherent Accelerator Processor
Interface (CAPI). Using CAPI an FPGA is able to appear to
the POWER 8 processor as if it were part of the processor.

Xilinx has also announced in late 2016 a new framework
called Reconfigurable Acceleration Stack. This stack is aimed
at hyper scale data center that need to deploy FPGA accelera-
tor. The FPGA boards can be hosted in typical servers and are
utilized based on application specific libraries and framework
integration for the five key workloads. These include ma-
chine learning inference, SQL query and data analytics, video
transcoding, storage compression, and network acceleration
[5]. According to Xilinx, the acceleration stack based on the
FPGAs can deliver up to 20x acceleration over traditional
CPUs with a flexible, reprogrammable platform for rapidly
evolving workloads and algorithms.

In [6], a novel approach for integrating virtualized FPGA-
based hardware resources into cloud computing systems with
minimal overhead. The proposed framework allows cloud
users to load and utilize hardware accelerators across multiple
FPGAs using the same methods as the utilization of Virtual
Machines. The reconfigurable resources of the FPGA are
offered to the users as a generic cloud resources through
OpenStack.

In this paper, we present a seamlessly utilization of hard-
ware accelerators that can be used both for embedded systems
and high-performance applications like cloud, edge and fog
computing. The proposed framework allows the seamlessly
utilization on the hardware accelerators based on the Spark
framework using the accelerators as python packages.

III. SPARK FRAMEWORK

One of the typical applications that are hosted in cloud
computing is data analytics. Apache Spark [7] is one of the
most widely used frameworks for data analytics. Spark has
been adopted widely in recent years for big data analysis
by providing a fault-tolerant, scalable and easy to use in-
memory abstraction. Specifically, Spark provides programmers
with an application programming interface centered on a data
structure called the resilient distributed dataset (RDD). RDD
is a read-only multiset of data items distributed over a cluster
of machines, that is maintained in a fault-tolerant way [8]. It
was developed in response to limitations in the MapReduce
cluster computing framework, which forces a particular lin-
ear dataflow structure on distributed programs. MapReduce
programs read input data from disk, map a function across
the data, reduce the results of the map, and store reduction
results on disk. Spark’s RDDs function as a working set for
distributed programs that offers restricted form of distributed
shared memory. Therefore, the latency of such applications,
compared to Apache Hadoop, may be reduced by several
orders of magnitude.

When the user runs an action (like collect), a Graph is cre-
ated and submitted to a DAG Scheduler. The DAG scheduler
divides operator graph into (map and reduce) stages. A stage
is comprised of tasks based on partitions of the input data.
The DAG scheduler pipelines operators together to optimize
the graph. The final result of a DAG scheduler is a set of
stages. The stages are passed on to the Task Scheduler. The

task scheduler launches tasks via cluster manager. The Worker
then executes the tasks for the task processing [8].

Spark libraries covers 4 main categories of applications:
machine learning (MLib), graph computation (GraphX), SQL
query and streaming applications.

IV. PYNQ: ALL PROGRAMMABLE SYSTEMS ON CHIPS
(APS0Cs)

Xilinx released in 2016 the Pynq framework that allows
the fast programming of the heterogeneous all-programmable
SoC [9]. Using the Python language and libraries, designers
can exploit the benefits of programmable logic and micropro-
cessors in Zynq to build more capable and exciting embedded
systems. Programmable logic circuits are presented as hard-
ware libraries called overlays. These overlays are analogous
to software libraries. A software engineer can select the
overlay that best matches their application. The overlay can be
accessed through an application programming interface (API)

The Pynq platform is based on the Zynq all-programmable
SoC. Zynq FPGA incorporates two RISC Cortex A9 ARM
cores and a programmable logic unit in a single chip [7].
Each of these cores has 32 KB Level 1 4-way set-associative
instruction and data cache and they share a 512 KB Level 2
cache. The processors are clocked at 667 Mhz and they have
coherent multiprocessor support.

Zynq platform has a high performance interface for the di-
rect communication of the ARM cores with the programmable
logic part. The high performance bus is based on the ARM
AMBA 3.0 interconnection that has several advantages such as
QoS, multiple-outstanding transactions and low-latency paths.

V. SPYNQ: A FRAMEWORK FOR SPARK EXECUTION ON
PYNQ PLATFORM

On top of the Pynq framework, we have efficiently mapped
the Spark framework and we have adapted it to communicate
with the hardware accelerators located in the programmable
logic of the Zynq system.

Figure 1 depicts the high level architecture of the SPynq
framework and the mapping on the Zynq platform. Spark
is hosted on the ARM processors, on top of the Python
VM that is hosted on Ubuntu OS. Both the master and the
worker nodes are hosted on the ARM cores. Furthermore, a
python API is used for each accelerator that is used for the
communication with the hardware accelerator. Each Python
API is communicating with the C library that serves as the
hardware accelerator driver.

On the reconfigurable logic part, the hardware accelerators
for the specific application are hosted. The hardware acceler-
ators are invoked by the python API of the Spark application.
Therefore, the only modification that is required by the Spark
user is the replacement of the library function calls with the
python API for communication with the hardware accelerator.

In the typical case, the Spark application invokes the Spark
MLlIib and this library utilizes the Breeze library (a numerical
processing library for Scala). Breeze library invokes the Netlib
Java framework that is a wrapper for low-level linear algebra

Zynq all-programmable MPSoC

I32KhB ARM |32KhB ARM

g;?(Be Cortex gg(l:(Be Cortex
Dcache A9 Dcache A9

3 Application tprocessors
[Interconnect |
_________ | AXlbusp .
data weights gradients
A 4 \ 4

| AXI stream |

Gradients kernel
I Dot (features*weights) |

I Prediction (h(dot)) |
v

I Dif (prediction — labels) |

I Gradients (dif*features) |

Programmable Logic

Fig. 1. Acceleration of Spark on a Zynq FPGA platform based on Pynq

tools implemented in C or Fortran. Netlib Java is executed
through the Java Virtual Machine (JVM) and the actual linear
algebra tools (BLAS - Basic Linear Algebra Subprograms)
are executed through the Java Native Interface (JNI). It is
interesting to note that BLAS can be written in C or even
Fortran.

All these layers add a significant overhead to the spark
applications. Especially in applications like machine learning,
where heavy computations are required, these layers add a
significant overhead for the fast execution of the tasks. Most
of the clock cycles are wasted for passing through all these
layers.

The utilization of hardware accelerators directly from Spark
has two major advantages; firstly, the application in Spark
remains as it is and the only modification that is required is
the replacement of the machine learning library’s function with
the function that invokes the hardware accelerator. Secondly
the invoking of the hardware accelerators from the python API
eliminates many of the original layers thus making faster the
execution of these tasks. The python API invokes the C API
that serves as a hardware acceleration’s library. The driver is
used to send the parameters through the AXI interface to the
hardware accelerator.

The modifies functions for the execution of the function
in the hardware accelerator, need to convert the RDDs to an
array of variables, send the RDDs to the hardware accelerator
and then convert back the results to RDDs that can be further
processed by the rest of Spark program.

VI. A USE-CASE FOR MACHINE LEARNING BASED ON
LOGISTIC REGRESSION

To evaluate the proposed framework, we have developed
a hardware accelerator for machine learning based on logistic
regression. The hardware accelerator has been developed using
the High-Level Synthesis tool (Vivado HLS) from Xilinx. The

logistic regression application has been written in C and has
been annotated with HLS pragmas for the efficient mapping
in reconfigurable logic.

Logistic regression measures the relationship between the
categorical dependent variable and one or more independent
variables by estimating probabilities using a logistic function,
which is the cumulative logistic distribution. Like other forms
of regression analysis, logistic regression makes use of one
or more predictor variables that may be either continuous
or categorical. Unlike ordinary linear regression, however,
logistic regression is used for predicting binary dependent
variables rather than a continuous outcome.

Logistic regression is used for building predictive models
for many complex pattern-matching and classification prob-
lems. It is used widely in such diverse areas as bioinformatics,
finance and data analytics. It is also one of the most popular
machine learning techniques. It belongs to the family of
classifiers known as the exponential or log-linear classifiers
and is widely used to predict a binary response.

For binary classification problems, the algorithm outputs
a binary logistic regression model. Given a new data point,
denoted by z, the model makes predictions by applying the
logistic function h(z) = ﬁ, where z = w’z.

By default, if h(w?z) > 0.5, the outcome is positive,
or negative otherwise, though unlike linear SVMs, the raw
output of the logistic regression model, h(z), has a probabilistic
interpretation (i.e., the probability that xis positive).

Given a training set with n-data points and m-features
(2(0,)y?), (2(1,)yY),, (zln — 1),y‘n — 1)), where ¢’ is the
binary label for input data z* indicating whether it belongs to
the class or not, logistic regression tries to find the parameter
argument that minimizes the following cost function:

1 . , . .
J(w) === " y'log(h(W"z")) + (1 = Y")log(1 — h(w"z"))
n
ey
The problem is solved using gradient descent over the
training set:

1 , .
dientsy, = —= Y (h(W'a") = y'), 2
gradients nZ((Wa') —y")z ()

For multi-class classification problems, the algorithm will
output a multinomial logistic regression model, which contains
k-binary logistic regression models. Given a new data point,
k-models will be run, and the class with largest probability
will be chosen as the predicted class.

Figure 2 shows the original and the modified code for the
utilization of the hardware accelerator in the Spark code. In the
original code, the logistic regression libraries are used and the
specific functions are called for the training of the application.

In the modified example, we first import the Pynq libraries
that are used for the configuration of the FPGA and for
the interface with the accelerators. We also import the spe-
cific API library that is used for the communication of the
processor with the logistic regression hardware accelerator.
The only other modifications that we need to make is the

Original code

import
org.apache.spark.mllib.linalg.BLAS.dot

Def train(
New LogisticRegressionWithBGD
(stepSize, numIterations, 0.0,
miniBatchFraction)
.run(input, initialWeights)

import

org.apache.spark.mllib.linalg.BLAS.dot
from pyng import PL, Overlay
from pynqg.board import logistic

Modified code

// download bitstream
Accel_Initialization (logistic.bit)

Def train(

// return weights
Model=LogisticRegressionAccel. train(dataset)

Fig. 2. Original and modified code for the logistic regression example

replacement of the functions that we want to execute with the
specific API for the utilization of the hardware accelerator (i.e.
acceljogistic.egression).

The python API that is developed pass the parameters to
the C API that serves as driver for the hardware accelerator.
The C API is used to pass the parameters through the AXI
interface to the hardware accelerator from the processors. After
the hardware accelerator has finished the execution of the task,
the results are again returned to the processor through the AXI
bus, then the C API and finally through the Python API.

VII. PERFORMANCE EVALUATION

As a case study, we built a classification model with 784
features and 10 labels using 40k training samples, for a hand-
written digits recognition problem. The following paragraphs
shows the performance evaluation in terms of latency and
execution time.

A. Latency and Execution time

For the efficient utilization of hardware accelerators, low-
latency communication is required between the host processor
and the accelerator. To evaluate the latency of the commu-
nication between Spark and the accelerator we measured the
time to send a single 32-bit word in the programmable logic.
The overall time is around 300 usec including the time for
the python API, the C API, the latency of the JNI, and the
latency of the AXI bus. In cases that the communication of
the processor and the accelerator is often and bidirectional,
this latency can be a major overhead and may diminish the
speedup of the accelerator. However, in applications where
the processor send a bulk amount of data (e.g. through the
AXI streaming interface), the communication overhead is
overlapped by the computation time.

In the case of the logistic regression, the processor needs to
send a large amount of data for the training of the application

TABLE I
RESOURCE ALLOCATION OF THE LOGISTIC REGRESSION ACCELERATOR

[Resources [[Used | Total [Utilization |
DSP 160 220 T2%
BRAM 84 140 60%
LUT 47809 53200 90%

FF 47446 106400 45%

and therefore the communication overhead is overlapped by
the computation time. In terms of resource allocation, Table I
shows the utilization of the hardware resources for the Zynq
FPGA SoC.

VIII. CONCLUSIONS

Hardware accelerators can improve significantly the perfor-
mance and the energy efficiency of data analytic applications.
However, currently data analytics frameworks like Spark do
not support the seamlessly utilization of hardware accelerators.
In this paper we have a present a novel scheme for the
seamlessly utilization of hardware accelerators using the Spark
framework that is widely used in data analytics. We have
implemented a hardware accelerator for logistic regression that
is connected to processors through the AXI interface and we
have integrated the accelerator with the Spark framework in a
single SoC that support programmable logic. The performance
evaluation shows up to 11x speedup for the logistic regression
and shows that the proposed framework can be utilized to
support any kind of hardware accelerators.

IX. ACKNOWLEDGMENTS

This project has received funding from the European
Union Horizon 2020 research and innovation programme
under grant agreement No 687628 - VINEYARD: Versa-
tile Integrated Accelerator-based Heterogeneous Data Centers
www.vineyard-h2020.eu. We thank Xilinx University Program
for donating the EDA tools.

REFERENCES

[1] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Power challenges may end the multicore era.
Commun. ACM, 56(2):93-102, February 2013.

[2] Christian Martin. Post-Dennard Scaling and the final Years of Moores
Law. Technical report, 2014.

[3] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. IEEE Micro,
32(3):122-134, May 2012.

[4] C. Kachris and D. Soudris. A survey on reconfigurable accelerators
for cloud computing. In 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), pages 1-10, Aug 2016.

[5] Xilinx reconfigurable Acceleration Stack targets machine learning, data
analytics and Video Streaming. Technical report, 2016.

[6] S. Byma, J.G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow.
Fpgas in the cloud: Booting virtualized hardware accelerators with open-
stack. In Field-Programmable Custom Computing Machines (FCCM),
2014 IEEE 22nd Annual International Symposium on, pages 109-116,
May 2014.

[71 Apache, spark, http://spark.apache.org/.

[8] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI'12,
pages 2-2, Berkeley, CA, USA, 2012. USENIX Association.

[9] Pynq: Pyhton productivity for Zynq. Technical report, 2016.

