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Abstract—Microservers have recently gained attention as low-
cost, low power, reduced footprint servers that are mainly based
on energy efficient processors such as the ones used in embedded
systems. Microservers based on low-power embedded proces-
sors are mainly targeting lightweight applications or parallel
applications that benefit most from individual low-power servers
with sufficient I/O between nodes rather than high performance
processors. In this paper we evaluate the mapping of Apache
Spark on low-power SoC-based processors. Apache Spark is
one of the most widely framework in cloud computing for
batch and streaming data analytics. We evaluate the energy
efficiency of low-power SoCs that are used in embedded system
for the execution of several Spark applications. The performance
evaluation shows that low-power SoCs have the potential to offer
up to 3x higher energy efficiency compared to high performance
processors typically used in data centers.

I. INTRODUCTION

Emerging web applications like cloud computing and big
data analytics have increased significantly the workload on the
data centers during the last years. In 2015, the total network
traffic of the data centers was around 4.7 Exabytes and it
is estimated that by the end of 2018 it will cross the 8.5
Exabytes mark, following a cumulative annual-growth rate
(CAGR) of 33% (Figure |I|, [1]). In response to this scaling in
network traffic, data-center operators have resorted to utilizing
more powerful servers. Relying on Moore’s law for the extra
edge, CPU technologies have scaled in recent years through
packing an increasing number of transistors on chip, leading
to higher performance. However, on-chip clock frequencies
were unable to follow this upward trend due to strict power-
budget constraints. Thus, a few years ago a paradigm shift to
multicore processors was adopted as an alternative solution
for overcoming the problem. With multicore processors we
could increase server performance without increasing their
clock frequency. Unfortunately, this solution was also found
not to scale well in the longer term. The performance gains
achieved by adding more cores inside a CPU come at the
cost of various, rapidly scaling complexities: inter-core com-
munication, memory coherency and, most importantly, power
consumption [2].

In the early technology nodes, going from one node to the
next allowed for a nearly doubling of the transistor frequency,
and, by reducing the voltage, power density remained nearly
constant. With the end of Dennard’s scaling, going from one
node to the next still increases the density of transistors,
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but their maximum frequency is roughly the same and the
voltage does not decrease accordingly. As a result, the power
density increases now with every new technology node. The
biggest challenge therefore now consists of reducing power
consumption and energy dissipation per mm?. The failure of
Dennard’s scaling, to which the shift to multicore chips is
partially a response, may soon limit multicore scaling just as
single-core scaling has been curtailed. This issue has been
identified in the literature as the dark silicon era in which
some of the areas in the chip are kept powered down in order
to comply with thermal constraints [3]].
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Fig. 1. Global Data Center Network Traffic Growth Projection, Source: Cisco
Global Cloud Index 2016

One way to address this problem is throught the utilization
of microservers. Microservers have recently gained attention as
low-cost, low power, reduced footprint servers that are mainly
based on low-power energy-efficient SoC-based processors
such as the ones used in embedded systems. Microservers are
mainly targeting lightweight applications or parallel applica-
tions that benefit most from individual servers with sufficient
I/O between nodes rather than high performance processors.

According to a new report by International Data Corp.
(IDC), ARM-based server processors is expected to have a
compound annual growth rate (CAGR) of 2.2% between 2015
and 2020 [4]. Based on this report, ARM processor vendors
such as Applied Micro and Cavium have begun garnering
notable design wins and partnerships from communications



service providers and systems vendors representing a wide
spectrum of end customers and workloads. IDC predicts that
the market for ARM and X86-based server processors will
grow to reach $15.3 billion in 2020. In 2016 IDC predicts
that x86 and ARM server-class processor revenue will be about
$13.9 billion, up 1.3% from 2015.

In this paper we compare the energy efficiency of low-power
64-bit SoCs that are widely used in embedded applications
with a high performance processor in terms of throughput,
power and energy consumption for the the widely-used Spark
framework.

The main contributions of this paper are the followings:

o An efficient mapping of Apache Spark on low-power
embedded SoCs

o A thorough performance evaluation in terms of execution
time, power and energy consumption

o A detailed analysis of the potential applications in Spark
that could benefit most from low-power SoC-based pro-
CEessors.

II. RELATED WORK

In [5]], a thorough study of power and performance measure-
ments is performed for several BiG Data applications. In that
study, an analysis is performed on system level and micro-
architectural level, and a detailed characterization of several
big data applications on big Xeon and little Atom-based server
architecture. The characterization results across a wide range
of real-world big data applications and various software stacks
demonstrate how the choice of big vs little core-based server
for energy-efficiency is significantly influenced by the size
of data, performance constraints, and presence of accelerator.
However, the paper is evaluating frameworks that are not
based on Spark which is the most widely used in-memory
data analytics framework. Furthermore, the paper compares the
performance and the power consumption of Xeon and Atom
processors that are both belong to the same x86 architecture.

In [6]], they evaluate the performance and the energy ef-
ficiency of 64-bit eight-core ARM processors with the Intel
Atom and Xeon processors. These platform are evaluated
in terms of branch prediction performance, arithmetic per-
formance, the memory system performance and the energy
efficiency. For the performance evaluation they use several
applications like memcached, FT and CG, but again in the
applications it is not included the Spark programming frame-
work.

In [7], [8], a performance evaluation study has been pre-
sented between high performance server cores (e.g. Intel Xeon
processors) with low power general purpose cores (e.g. Intel
Atom processors) specifically for web search applications. The
comparison has shown that low power general purpose cores
can achieve better energy efficiency in the domain of web
search applications.

In [9], an analysis has been performed on the feasibility
of building servers based on low power computers through a
comparison of server applications running on x86 and ARM
computer architectures. The comparison executed on web and

database servers includes power usage, CPU load, temperature,
request latencies and the number of requests handled by each
tested system. The use of ARM based systems has shown to
be a good choice when power efficiency is needed without
losing performance.

In [10], it is found that a cluster based on ARM processor
had a power efficiency ranging from 1.3 to 6.2 times greater
than that of Intel processor for the NAS benchmarks. In [[11]],
they compare the performance and energy efficiency of high-
performing processors (such as Intel Core i7 or E7)with energy
efficient processors (such as Intel Atom, AMD Fusion or ARM
Cortex A9). In this study it is also shown that for some HPC
applications low-power processor offer better energy efficiency
although the execution time is higher when compared to high
performance processors.

In [12], low power processor and high performance pro-
cessors are evaluated in three applications; Web server, in-
memory database, and video transcoding. In the performance
evaluation it is shown that the energy-efficiency ratio of the
ARM cluster against the Intel workstation varies from 2.6-9.5
in in-memory database, to approximately 1.3 in Web server
application, and 1.21 in video transcoding.

In [13], they investigate the performance and power mea-
surements among various Hadoop configurations and system
and architecture level parameters and how it affects the per-
formance and the energy-efficiency across various Hadoop
applications on Microservers.

Finally, in [14], it is presented a study of a Hadoop
cluster for processing Big Data built atop 22 ARM boards.
Experiments on three different hardware configurations were
conducted to understand limitations and constraints of the
cluster. From the experimental results, it was concluded that
processing Big Data on an ARM cluster is highly feasible.
The cluster could process a 34 GB Wikipedia article file in
acceptable time, while generally consumed the power 0.061-
0.322 kWh for all benchmarks. However, the paper does not
present any comparison against high performance processor in
terms of energy efficiency.

III. VERSATILE HETEROGENEOUS ENERGY-EFFICIENT
DATA CENTERS: THE VINEYARD PROJECT

Thw study on energy-efficient systems as an alternative to
high performance processors in data centers is part of the work
in the VINEYARD project. The VINEYARD project, funded
by EC-Horizon2020 program, has been formed in order to
tackle the challenges on the high power consumption in the
data centers. Future heterogeneous data centers consisting of
different kinds of accelerators (FPGAs, GPUs, SoCs, etc.) will
be able to provide higher performance under lower power
consumption and higher energy-efficiency. However, to main-
tain in such heterogeneous systems the ease of programming
of homogeneous ones, an integrated run-time scheduler and
manager will be required to hide low-level details and relieve
the user from the programming complexities involved (per
different accelerator type). VINEYARD aims specifically at
the automatic utilization of accelerators through developing



such an integrated framework that will control the hardware
accelerators, while the user will still be allowed to use typical
parallel programming frameworks.

VINEYARD aims to develop an energy-efficient integrated
platform for data centers that will consist of energy-efficient
servers based on customized hardware accelerators (i.e. FPGA-
based and SoC-based servers) and a programming framework
that will allow users to seamlessly utilize hardware acceler-
ators in heterogeneous computing systems by using typical
scalable cloud frameworks (i.e. Spark).

The VINEYARD project aims to develop novel energy-
efficient servers based on programmable dataflow accelerators
and integrated SoCs that can be customized based on the
data-centers application requirements. These programmable
dataflow accelerators will be used not only to increase the
performance of servers but also to reduce the energy consump-
tion in data centers. Furthermore, VINEYARD will develop
a programming framework that will hide the complexity
of programming heterogeneous systems while at the same
time providing the optimized performance of customized and
heterogeneous architectures. In this suite, the user works
with familiar programming frameworks (i.e. Spark) while a
run-time manager selects appropriate accelerators based on
application requirements such as execution time and power
consumption.

Finally, VINEYARD will provide the necessary middleware
that binds together servers with accelerators. Along with this
task, VINEYARD will consider both physical servers and
virtual machines (VMs). The middleware also handles QoS
concerns that arise with the shared use of the accelerators. In
this way, the VINEYARD project will develop an integrated
platform for heterogeneous accelerator-based servers. The
VINEYARD platform will include both the hardware com-
ponents (customized accelerators) and a software framework,
which consists of two novel components: (i) a programming
framework that integrates familiar programming models into
heterogeneous systems, and (ii) a middleware layer that sup-
ports this heterogeneity in virtualized data centers.

Figure [2] depicts the high level diagram of the VINEYARD
framework. Applications that are targeting heterogeneous data
centers using traditional servers or micro-servers are pro-
grammed using traditional data center frameworks, such as
Spark, and the widely used data management technologies,
such as SQL (both OLTP and OLAP for operational databases
and data warehouses), NoSQL (a key value data store), and
Complex Event Processing (CEP). However, some of the tasks
are common across several applications such as sorting of
data, key/value processing, encryption, compression, pattern
matching, etc. and are extremely computationally intensive.
These tasks can be implemented in hardware as customized
intellectual-property (IP) accelerators that can achieve much
higher performance with lower power consumption. The im-
plementation of the hardware accelerators can be achieved
using traditional hardware description languages or other
high-level (C, OpenCL) or domain-specific languages (i.e.
OpenSPL). These hardware accelerators can be hosted in a
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Fig. 2. High level block diagram of the VINEYARD integrated framework.

repository that can interface with the run-time scheduler.

The integrated data center that will be developed will
be evaluated under three real-life workloads and industrial
benchmarks for financial applications, data management, and
bio-informatics. The first workload that will be evaluated will
be in the domain of financial applications. For this reason
the Greek Stock Exchange Market will be used as an end
user demanding a) real-time analytics which are necessary
for market surveillance and decision management and b)
rapid computations for risk management, as an additional
computation step within the trade process chain.

The second workload that will be evaluated will be in the
domain of scientific computing, and more specifically in the
domain of computational neuroscience which aims at better
understanding the working of the human brain through use
of mathematical models of biological neural networks. The
particular application is a high-performance, high-accuracy
simulation of the Olivocerebellar system of the brain, crucial to
the understanding of cerebellar functionality. Better modeling
and understanding of its function can lead to major break-
throughs in the treatment of cerebellum-related degenerative
diseases (such as autism, fragile-X syndrome etc.).

The third workload will be based on data management
based on TPC-C and TPC-H. TPC-C is representative of
the transactional workloads run at operational databases of
enterprises. It will be run on top of the LeanXcale OLTP
database to represent the full stack of enterprise OLTP appli-
cations. TPC-H is representative of the analytical workloads
run at data warehouses of enterprises. It will be run on top
of the LeanXcale OLAP database to evaluate the efficiency
improvements for analytical queries.

In this paper, we perform a first analysis of the potential
energy saving that we could achieve in the data centers by
deploying low-power embedded processors for the execution
of the Spark framework.
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Fig. 3. The Spark framework

IV. SPARK FRAMEWORK

One of the typical applications that are hosted in cloud
computing is data analytics. Apache Spark [15] is one of the
most widely used frameworks for data analytics. Spark has
been adopted widely in recent years for big data analysis
by providing a fault-tolerant, scalable and easy to use in-
memory abstraction. Specifically, Spark provides programmers
with an application programming interface centered on a data
structure called the resilient distributed dataset (RDD). RDD
is a read-only multiset of data items distributed over a cluster
of machines, that is maintained in a fault-tolerant way [16].
It was developed in response to limitations in the MapRe-
duce cluster computing framework, which forces a particular
linear dataflow structure on distributed programs. MapReduce
programs read input data from disk, map a function across
the data, reduce the results of the map, and store reduction
results on disk. Spark’s RDDs function as a working set for
distributed programs that offers restricted form of distributed
shared memory. Therefore, the latency of such applications,
compared to Apache Hadoop, may be reduced by several
orders of magnitude.

When the user runs an action (like collect), a Graph is cre-
ated and submitted to a DAG Scheduler. The DAG scheduler
divides operator graph into (map and reduce) stages. A stage
is comprised of tasks based on partitions of the input data.
The DAG scheduler pipelines operators together to optimize
the graph. The final result of a DAG scheduler is a set of
stages. The stages are passed on to the Task Scheduler. The
task scheduler launches tasks via cluster manager. The Worker
then executes the tasks for the task processing as is depicted
in Figure 3]

Spark libraries covers 4 main categories of applications: ma-
chine learning, graph computation, SQL query and streaming
applications.

o Spark MLIib is Sparks scalable machine learning li-

brary consisting of common learning algorithms and
utilities, including classification, regression, clustering,

TABLE I
MAIN FEATURES OF THE EVALUATED PROCESSORS

’ Features ‘ Intel ‘ Intel ‘ Raspberry3 ‘ Snapdragon
Vendor Intel Intel Broadcom Qualcomm
Device E5-2650 | i5-430M BCM2837 Snapdragon410
Cores (threads) 8(16) 2(4) 4 4
Processor E5-2650 i5 AS3 AS3
Architecture 64-bit 64-bit 64-bit 64-bit
Architecture CISC CISC RISC RISC
Process 22nm 32nm 40nm 28nm
Clock Frequency | 2.6 GHz | 2.2 GHz 1.2 GHz 1.2 GHz
Level 1 cache 512 kB 128 kB 32 kB 32 kB
Level 2 cache 2048 kB | 512 kB 512 kB 512 kB
TDP I5SW 35W 4w 3.7W
Operating system | CentOS Ubuntu Debian Debian

collaborative filtering, dimensionality reduction, as well
as underlying optimization primitives.

e GraphX is a Spark API (Application Programming In-
terface) for graphs and graph-parallel computation. At a
high level, GraphX extends the Spark RDD by introduc-
ing the Resilient Distributed Property Graph: a directed
multi-graph with properties attached to each vertex and
edge. GraphX includes a growing collection of graph
algorithms and builders to simplify graph analytics tasks.

e Spark SQL provides the capability to expose the Spark
datasets over JDBC API and allow running the SQL
like queries on Spark data using traditional business
intelligence (BI) and visualization tools.

¢ Spark Streaming can be used for processing the real-time
streaming data. This is based on micro batch style of
computing and processing. It uses the DStream which is
basically a series of RDDs, to process the real-time data.

V. LOW-POWER S0oC

In this paper we compare the energy efficiency of a typical
high-performance processor with two low-power embedded
processors based on the ARM cores. Table |I| shows the main
features of each platform. Both of the ARM-based processors
host 4 64-bits ARM cores (A53). The Raspberry board is
based on the Broadcom SoC (BCM2835) fabricated using
40nm process technology and clocked at 1.2GHz. The second
board is from Snapdragon and is based on the 410 SoC from
Qualcomm. This processor also host 4 64-bits ARM cores and
is also clocked at 1.2GHz. However, this SoC is fabricated at
28nm process technology. As a reference platform, the Xeon
E5-2650 processor has been selected with 8 cores clocked at
2.6GHz. Also in this paper, a commodity processor for laptops
has been selected based on the Intel i5 processors to show how
this platform is compared against the high-performance Xeon
processors and the low-power SoCs.

VI. PERFORMANCE EVALUATION

To evaluate the performance and the energy-efficiency of
the low-power SoCs, we have used a set of Spark applications



TABLE II
SUITE OF APPLICATIONS FOR THE PERFORMANCE EVALUATION

Application ‘ Type ‘ Description
Linear ML Linear regression is used for mod-
Regression eling the relationship between a

scalar dependent variable and one
or more explanatory variables.

Logistic Regres- | ML
sion

Logistic regression measures the
relationship between the categori-
cal dependent variable and one or
more independent variables by es-
timating probabilities using a logis-
tic function.

KMeans ML A method of vector quantization
that is used for cluster analysis in
data mining.

CC GraphX Compute the connected compo-
nents of vertices

PageRank GraphX Used of page ranking in web search
engines

Triangles GraphX Count the number of triangles

as benchmark. Spark provides a wide set of reference appli-
cations that can be used as micro-benchmarks. In the current
evaluation we have evaluated three representative applications
from the domain on machine learning and three representative
applications from the domain of graph computation. The
application and the description of each application is shown
in Table [

In the current evaluation we have measured the execution
time and the energy efficiency of these application on 4
platforms; one Intel Xeon processor, One Intel i5 processor
and two 64-bit ARM-based SoCs. We note that for the
performance evaluation we have not used a cluster of nodes but
just a simple node in which both the Worker and the Master
node are hosted. Therefore, the current performance evaluation
does not measure the performance of the processors on the
Worker nodes but evaluates the performance of the the whole
Spark framework. The characteristics of the processors and the
operating system for each platform are presented in Table
In all cases, 4 cores are used for the performance evaluation
in order to make a fair comparison between the processors.

A. Execution time

The execution time refers to the total execution time of the
evaluated application including the processes for the Master
node, the Worker nodes and the resource management. The
total execution time was measured based on the inherent
timers of the application. As is is shown in Figure [} the total
execution time of the applications running on the 64-bit SoCs
are 6.1x to 13x higher than the one in the Xeon processor. It is
interesting to note that although both the Qualcomm and the
Broadcomm SoC are using the same 64-bit A53 processors
and these processors are clocked at the same frequency, there
is overall higher execution time in the Snapdragon platform.
Specifically, the average execution time of the Raspberry
platform based on the Broadcom processor is 8x longer than
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Fig. 4. Comparison of the execution time for the Spark applications. The
execution times are normalized to the Intel Xeon processor

the Xeon processor and the execution time of the Snapdragon
platform is 11x longer than the Xeon processor.

B. Power and energy consumption

The main advantage of the SoCs is that they are optimized
for low power consumption. In this section we evaluate the
energy efficiency (power x executioniime) of the SoC for
Apache Spark. In the current evaluation the energy consump-
tion is based on TDP (Thermal Density Power) features of
the processors. TDP refers to the maximum dissipated power
of the processors. Therefore, the comparison on the energy
efficiency between the platforms are just indicative and are
used as a first approximation for the potential energy savings
based on the SoCs. Figure [5] depicts the normalized energy
efficiency of the Spark in the four platforms. As it is shown
in this figure, the energy consumption of the low-power SoC is
2-3.5x better than the energy consumption based on the Intel
Xeon processor.
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VIII. CONCLUSIONS

In this paper we evaluate the energy efficiency of low-
power SoC platforms for the Apache Spark framework used
in data analytics. The performance evaluation shows that the
SoC-based processors are 8x to 11x worst in terms of total
execution time. However, due to the lower power consumption
they have the potential to offer much better energy efficiency.
For machine learning application based on Spark they can
provide up to 3x better energy efficiency while for graph
computations can provide up to 3.5x better energy efficiency.
Therefore, in cases where we care more about the energy
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efficiency and not mainly on the execution time, SoC-based
servers could provide a promising alternative in order to reduce
the power and the TCO of data centers.
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