
Hardware Acceleration on Gaussian Naive Bayes
Machine Learning Algorithm

Georgios Tzanos
Dep. of Electr. and Computer Engineering

NTUA
Athens, Greece

grg.tzan@gmail.com

Christoforos Kachris
ICCS-NTUA

& DUTH
Greece

kachris@microlab.ntua.gr

Dimitrios Soudris
Dep. of Electr. and Computer Engineering

NTUA
Athens, Greece

dsoudris@microlab.ntua.gr

Abstract—Naive Bayes is one of the most effective and ef-
ficient classification algorithms and its classifiers still tend to
perform very well under unrealistic assumptions. Especially
for small sample sizes, naive Bayes classifiers can outperform
the more powerful classifiers. Therefore the acceleration of
such an algorithm becomes a great asset in machine learning
applications. The SDSoC environment provides a framework
for developing and delivering hardware accelerated embedded
processor applications using standard programming languages.
A Hardware Acceleration project has been implemented on the
all-programmable MPSoC and it has been evaluated on a typical
machine learning application based on Naive Bayes. The Naive
Bayes kernel has been developed as accelerator in both training
and prediction part. The performance evaluation shows that the
heterogeneous accelerator-based MPSoC can achieve up to 16.8x
system speedup compared with an embedded ARM processor
in the training part and 14x speedup in the prediction part.
The accelerator had been also integrated with Python using the
Pynq-Z1 device.

I. INTRODUCTION

Most software today is written so that instructions are
executed in sequence, and to speed up execution program-
mers have typically pushed the hardware designers to build
processor with ever higher clock rates. That has given rise to
heavily pipelined processors that operate at clock rates of 3
GHz and more. These processors also include architectural
tricks such as large caches, and functions such as out-of-
order execution to get the most out of every clock cycle.
However, faster processors generate lots of heat and today,
clock speeds have, for the most part, leveled off since the heat
generated by the faster circuits ends up constraining the clock
speeds. To continue the march towards ever-faster execution,
hardware designers have switched from a single processor on
a chip to dual, quad, and even more CPU cores on a single
chip. The operating system can then allocate the processors to
different applications, all running in parallel. The next level
down from there is to find ways to parallelize the code running
in each application and then run that parallelized code on
multiple engines either within the CPU or in a companion co-
processor that is optimized to execute that particular segment
of parallelized code.

In the latest generation field programmable gate arrays
(FPGAs), designers can accelerate computationally-complex
algorithms such as encryption, compression, search and sort,

up to 1000x times over a general-purpose processor. Also,
DSP algorithms that need billions of integer or floating-point
operations per second for image and audio processing, can
readily be accelerated by an FPGA-based co-processor. So this
issue has been identified in the literature as the dark silicon
era in which some of the areas in the chip are kept powered
down in order to comply with thermal constraints and one way
to address this problem is through the utilization of hardware
accelerators. Hardware accelerators can be used to offload the
processor, increasing the total throughput.

II. RELATED WORK

In the last few years, there are several efforts for the efficient
deployment of hardware accelerators based on Naive Bayes.

In [1] was proposed and implemented a real-time face de-
tection system on FPGA. Face detection was based on a Naive
Bayes classifier that classified an edge-extracted representation
of an image. The FPGA system used about six times less
resources than a comparable FPGA face detection system.

In [2] was proposed a VLSI architecture of Naive Bayes
classifier for multi-classification on FPGA. The objective of
this work is to facilitate real time classification of the facial
expressions into seven categories: happy, surprise, sad, disgust,
fear, anger and neutral, which could be used in any monitoring
system including lie detector.The implemented architecture
can perform real time classification operating at a frequency of
241.55 MHz. Accuracy increased as the number of extracted
features increased.

In [3] was proposed a real-time face detection system
based on Naive Bayesian classifier using Field programmable
gate array(FPGA). The detection system divided into three
main parts, feature extraction, candidate face detection, and
false elimination.As a result of the FPGA parallel processing
capabilities, in 640x480 resolutions, the face detection of an
image executes within 16.7 milliseconds.

In [4] was proposed a hardware architecture for Naive Bayes
inference engine that was used to classify email contents
for spam control. The inference engine design is synthesized
targeting the Altera Stratix FPGA device and the Naive Bayes
inference engine was found to have the capability to classify
more than 117 million features per second.

In [5] was proposed a Naive Bayes design on FPGA
using very limited hardware resources and runs quickly and
efficiently in both training and testing phases. It was first tested
on a handwriting digital number dataset, and then applied
in the visual object recognition on a single FPGA based
visual surveillance system. It was compared with a binary
Self Organizing Map (bSOM) using tri-states operation on
FPGA, and the experimental results demonstrated both its
higher performance and lower resource usage on the FPGA
chip.

In this paper we present a utilization of hardware accelerator
that can be used in embedded systems. Compared to other
implementations on FPGA based on Naive Bayes which are
mainly use multinomial and Bernoulli distributions trying to
increase the classification performance, our work is giving
emphasis to optimize the performance of this machine learning
algorithm on the FPGA using the Gaussian distribution. Our
purpose was to exceed embedded ARM processors, turning our
implementation into a good prospect for embedded systems
that execution speed really matters, something that we eventu-
ally achieved based on our experimental results. While we also
integrated our hardware accelerator in a Python environment,
through CFFI and precompiled libraries, for an efficient and
low-latency communication using Pynq.

III. GAUSSIAN NAIVE BAYES

Naive Bayes Classifier (NBC) is a simple probabilistic
classifier based on Bayess theorem[6]. It builds a probability
model on the category description for all feature vectors in the
training set. During the testing, makes classifications using the
Maximum A Posteriori decision rule.

A. The Model

The goal of any probabilistic classifier is, with features
x1 through xn and classes c1 through ck, to determine the
probability of the features occurring in each class, and to return
the most likely class. Therefore, for each class, we want to be
able to calculate P (ci|x0, . . . , xn).In order to do this, we use
Bayes rule. Recall that Bayes rule is the following:

P (A | B) =
P (B | A)P (A)

P (B)

and in our case is:

p(Y = C|x) = p(x|Y = C)p(Y = C)∑|C|
k=1 p(x|Y = Ck)p(Y = Ck)

both the denominator and the numerator can become very
small, typically because the p(xi|Ck) can be close to 0 and we
multiply many of them with each other. To prevent underflows,
one can simply take the log of the numerator. Therefore, in
order to prevent underflows: If we only care about knowing
which class (ŷ) the input (x = x1, . . . , xn) most likely belongs
to, with the maximum a posteriori (MAP) decision rule, we
don’t have to compute the denominator. For the numerator

we can simply take the logarithm to prevent underflows:
log(p(x|Y = C)p(Y = C)). More specifically:

ŷ = argmax
k∈{1,...,|C|}

p(Ck|x1, . . . , xn)

= argmax
k∈{1,...,|C|}

p(Ck)

n∏
i=1

p(xi|Ck)

which becomes after taking the log:

ŷ = argmax
k∈{1,...,|C|}

log (p(Ck|x1, . . . , xn)) (1)

= argmax
k∈{1,...,|C|}

log

(
p(Ck)

n∏
i=1

p(xi|Ck)

)
(2)

= argmax
k∈{1,...,|C|}

(
log (p(Ck)) +

n∑
i=1

log (p(xi|Ck))

)
(3)

where

P (xi | Ck) =
1√

2πσC2
k

e
− (xi−µCk)2

2σC
2
k

*σ = standard deviation, µ = mean

B. Training

Let assume he have a dataset in which every line contains
the class and the features of an object that belongs to this
class. In order to train our model based on this dataset
we have to calculate the means of every feature of every
class, the variance of every feature of every class and the
prior terms.Thus we have all the necessary values in order
to calculate Gaussian Bayes Probability.Additionally in order
to avoid multiple accesses on data array, which is not an
optimized option for a hardware implementation, we use the
formula bellow in order to calculate variance.

σ2 =

∑
(X − µ)2

N
=

∑
X2

N
− µ2

C. Classification

Now that we have a way to estimate the probability of a
given data point falling in a certain class, we need to be able to
use this to produce classifications. Naive Bayes handles this in
a very simple manner; simply pick the ci that has the largest
probability given the data points features.This is referred to
as the Maximum A Posteriori decision rule. This is because,
referring back to our formulation of Bayes rule, we only use
the P (B|A) and P (A) terms, which are the likelihood and
prior terms, respectively.

IV. ACCELERATOR ARCHITECTURE

SDSoC development Environment is a very powerful tool in
the hands of designers making hard acceleration not only more
designer-friendly but also more sufficient taking full advantage
of the benefit of the device.

In this project we have used SDSoC in order to accelerate
Naive Bayes machine learning algorithm both in Training
and Prediction part. The fact that both functions are highly

intensive depending on the given data, gives us the ability to
take advantage of the device whenever it is more suitable for
our application. In particular we had two completely differ-
ent functions to accelerate. The training function is mainly
communication intensive while it does not have very complex
mathematical calculations while the prediction function is
mainly computational intensive.The use of SDSoc gives us the
capability to make use of the internal architecture of FPGA in
a way to achieve maximum performance.

One of the main reasons that this heterogeneous system can
achieve such a performance is the setup of communication
between the PS(The embedded ARM processor) and the
PL(Programmable Logic) which is the AXI(Advanced eXten-
sible Interface)-Interface(Fig.1). Therefore we can achieve the
fastest data transferring for our application, firstly by defining
the access pattern as sequential in order to generate the stream-
ing interface. Secondly, by specifying the data-mover type,
used to transfer the array arguments, as AXI DMA simple
which provides high-bandwidth direct memory access between
memory and AXI4-Stream-type peripherals and finally by
determining the memory port that provides a cache coherent
interface between PL and external memory, for fast cache
flushing/invalidation.

Fig. 1. Simplified Block Designs

The second part of our hardware accelerator implementation
is to perform a data-flow analysis to understand how data
has to move between the different logic and computational
elements and then perform a latency analysis to try and
determine where potential bottlenecks may occur and find
the best possible performance depending on the cost of the
implementing design. Taking into consideration the fact that
in our implementation has been used a ZedBoard device.

The main challenge was to find the balance between device-
sources and theoretical analysis of the problem.

A. Training Implementation
Our Naive Bayes training implementation is based on three

main points.
The first one is to try to store as many data is possible in

local BRAMs in order to have direct access from the FPGA
and reduce to the minimum the latency of transferring the data
from the external memory. We accomplished that by copying
the data per line to local arrays:
for (i = 0; i < lines; i++){

for (j = 0; j < N_feat; j++){
#pragma HLS pipeline II=1

loc_data[j] = data[offset+i*N_feat+j];
}

}

The second main point in our implementation is to try to
avoid memory access bottlenecks. More specifically partition-
ing large arrays into multiple smaller arrays or into individual
registers we were capable of improving access to data and
removing block RAM bottlenecks:
#pragma HLS array_partition variable = var

block factor=28
#pragma HLS array_partition variable =

feature_means block factor=28
#pragma HLS array_partition variable =

sq_feature_means block factor=28
for (class = 0; class < N_class ; class++){

...
for (k = 0; k < 28; k++){

for (j = 0; j < N_feat; j+=28){
#pragma HLS pipeline II=1

feature_means[j+k]=(sums[j+k]/(float)
N_per_class[class]);

sq_feature_means[j+k]=(sq_sums[j+k]/(
float)N_per_class[class]);

var[k+j] = sq_feature_means[j+k] - ((
feature_means[k+j])*(
feature_means[k+j]));

}
}

}

Last but not least, and probably the most important mod-
ification in the algorithm is the pipelining of nested loops.
By pipelining the loops in the design, through pragma HLS
pipeline, with the best possible Initiation Interval and Iteration
Latency we have the maximum parallelism and therefore our
design can now compete an optimized software implementa-
tion.

B. Prediction Implementation
Prediction implementation also follows the same principles

but the nature of the algorithm allow us to have bigger
acceleration. As we can see probability calculation formula
is really intensive and this is something we tried to take
advantage. In this case beside the extraction of the data to
local BRAMs and the partition of large arrays into smaller
into avoid Block Ram bottlenecks we also used two other
algorithmic techniques.

The first one is that we separate the formula in independent
calculations and save them in individual local registers.The

purpose of this manual unroll of this calculation is to both
avoid bottlenecks and use as much DSPs cores as we can
simultaneously increasing the parallelization:

for (j = 0; j < N_feat; j++){
#pragma HLS pipeline II=1

temp[0] = loc_data[j] - loc_mean[i][j];
temp[1] = temp[0] * temp[0];
temp[2] = (-2) * loc_var[i][j];
temp[3] = temp[1] / temp[2];
A[j] = temp[3];
temp[4] = 2 * Pi * temp[2]/(-2);
temp[5] = sqrt(temp[4]);
B[j] = log(1/temp[5]);

}

The second technique we implement, is the use of a tree-
adder(Fig.2) to the individual results we have from the previ-
ous stage. We create an array of eight elements and we add
its values decreasing the stages the accumulator needs from
(n) to log(n).

Fig. 2. Tree adder

Thus by using techniques which allows FPGA to run in the
most optimized way, we can achieve the maximum paralleliza-
tion. The C programming experience that SDSoC provides,
alongside the directives to determine kernel operation, give
designers the friendly development environment of a high
level programming language with the simultaneously ability
to interfere with the hardware making designing easier to be
developed and surely easier to maintain.

V. PERFORMANCE EVALUATION

As a case study, we built a classification model with 784
features and 10 labels using 2k available training samples, for
a handwritten digits recognition problem (MNIST)[7].

In cases that the communication of the processor and
the accelerator is often and bidirectional, this latency can
be a major overhead and may diminish the speedup of the
accelerator. However, in applications where the processor
sends a bulk amount of data (e.g. through the AXI streaming
interface), the communication overhead is overlapped by the
computation time. In the case of the Gaussian Naive Bayes,
the processor needs to send a large amount of data for the
training of the application (as the training part is not so
computational intensive) and therefore the communication
overhead is overlapped by the computation time being up
to 16.8x times faster than an ARM processor .On the other

hand, prediction part of the algorithm because of its high
computational nature although it calculates each data line
independently reaches up to 14x time faster than an ARM.

In terms of resource allocation, Table I shows the utilization
of the hardware resources for the Zynq FPGA SoC in Training
function and the utilization of the hardware resources for
the Zynq FPGA SoC in Prediction function. (Fig.3) depicts

Fig. 3. Performance Results
the performance of both functions according to measurements
performed in the Xilinx ZedBoard evaluation board (C imple-
mentation) using SDSoc.

Moreover, we observed that as the size of the
buffer(packets), that is transferred through AXI stream
to the accelerator, gets smaller (such as 10 or 40 data lines),
the communication overhead limits the speedup. If the size
of the packets sent to the training accelerator is over 400
data lines, then the communication overhead is overlapped
by the computational saving in terms of execution times. The
maximum kernel speedup (16.8x) is achieved when the packet
size is almost 2000 data lines (8 Mbytes). This means that
by splitting each partition in 2K (to make use only of simple
DMAs) we can exploit our accelerator to the maximum.

TABLE I
HARDWARE FUNCTIONS RECOURSES

Recourses Used Available Utilization
Training

DSP 197 220 89.5%
BRAM 56 140 40%

LUT 37929 53200 71.3%
FF 29271 106400 27.5%

Prediction
DSP 93 220 42.3%

BRAM 112 140 80%
LUT 34977 53200 65.7%
FF 31779 106400 29.8%

VI. PYNQ: ALL PROGRAMMABLE SYSTEMS ON
CHIP(APSOCS)

Xilinx released in 2016 the Pynq framework that allows
the utilization of the heterogeneous all-programmable SoC
based on Python[8].Using the Python language and libraries,
designers can exploit the benefits of programmable logic and

microprocessors in Zynq to build more capable embedded
systems. Programmable logic circuits are presented as hard-
ware libraries called overlays. These overlays are analogous
to software libraries. Trying to set a cluster of nodes(Pynq-
workers) as a future work, taking advantage of the benefits
that Pynq offers, we first measured the performance of our
application running on a single Pynq compared both to an
ARM processor and an Intel i5(4th generation).

We achieved this implementation by firstly creating a pre-
compiled library (.so) which mainly contains the hardware
functions we previously implemented with SDSoC and Vivado
and secondly by using CFFI which is a function interface
for calling C code. The fact that, Python is one of the most
suitable programming-languages for our cluster but at the same
time is slow, gives us remarkable results in our application
compared to common processors. We had a direct access to our
Vivado/HLS driven implementation through CFFI that helped
us achieve a competitive performance towards an Intel Xeon
cluster. In particular, results showed that for 2000 data lines in
both training and prediction can achieve a significant speedup
as it is shown in the following table:

Training Time (s) Speed-up
Hw accel(Pynq) 1.1s -
Arm-A9(Pynq) 124s 112x
Intel i5 4.5s 4.1x

Prediction Time (s) Speed-up
Hw accel(Pynq) 2.7s -
Arm-A9(Pynq) 840s 311x
Intel i5 66s 24.4x

VII. CONCLUSION

Hardware accelerated data processing is still in an early
stages, but is likely to become more widespread, as the accel-
erating technologies continue to make strides over todays CPU
architecture as they can improve significantly the performance
and the energy efficiency of data analytic applications.

We have implemented a hardware accelerator for Naive
Bayes that is connected to processor through the AXI interface.
The proposed system can reduce the execution time compared
to an embedded processor up to (16.8x) times in the training
part and up to (14x) times in the prediction part.

We also integrated our hardware accelerator with Python
through CFFI we achieved execution speed, which resembles
to C implementation, in Python.

VIII. ACKNOWLEDGMENT

This project has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 687628 - VINEYARD, the Hellenic Foundation
for Research and Innovation (HFRI) and the General Sec-
retariat for Research and Technology (GSRT), under grant
agreement No 2212-CloudAccel and it is supported by Xilinx
University program.

REFERENCES

[1] Nguyen, D., D. Halupka, P. Aarabi, and A. Sheikholeslami. Real-Time
Face Detection and Lip Feature Extraction Using Field-Programmable
Gate Arrays. IEEE Transactions on Systems, Man and Cybernetics, Part
B (Cybernetics) 36, no. 4 (August 2006): 90212.

[2] P. Chaudhary and M. K. Sharma, VLSI Hardware Architecture of Real
Time Pattern Classification using Nave Bayes Classifier, in Proceedings
of the 2017 2nd International Conference on Multimedia Systems and
Signal Processing - ICMSSP 2017, Taichung, Taiwan, 2017, pp. 6165.

[3] Y. P. Chen, C. H. Liu, K. Y. Chou and S. Y. Wang, ”Real-time
and low-memory multi-face detection system design based on naive
Bayes classifier using FPGA,” 2016 International Automatic Control
Conference (CACS), Taichung, 2016, pp. 7-12.

[4] M. Marsono, M. W. El-Kharashi, and F. Gebali. Binary lnsbased na[i-
umlaut]ve bayes inference engine for spam control: noise analysis and
fpga implementation. IET Computers and Digital Techniques, 2(1):5662,
2008.

[5] H. Meng, K. Appiah, A. Hunter, and P. Dickinson, FPGA implemen-
tation of Naive Bayes classifier for visual object recognition, in CVPR
2011 WORKSHOPS, Colorado Springs, CO, USA, 2011, pp. 123128.

[6] M. Bayes and M. Price. An Essay towards Solving a Problem in the
Doctrine of Chances. By the Late Rev. Mr.Bayes, F. R. S. Communicated
by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philosophical
Transactions, 53:370418, 1763.

[7] Y. LeCun and C. Cortes. The MNIST database of handwritten digits.
1998.

[8] Pynq: Python productivity for Zynq, http://www.pynq.io/

