Evaluation of FPGA Partitioning Schemes for
Time and Space Sharing of Heterogeneous Tasks

Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis

Queen’s University Belfast

Abstract. Whilst FPGAs have been integrated in cloud ecosystems,
strict constraints for mapping hardware to spatially diverse distribution
of heterogeneous resources at run-time, makes their utilization for shared
multi tasking challenging. This work aims at analyzing the effects of
such constraints on the achievable compute density, i.e the efficiency in
utilization of available compute resources. A hypothesis is proposed and
uses static off-line partitioning and mapping of heterogeneous tasks to
improve space sharing on FPGA. The hypothetical approach allows the
FPGA resource to be treated as a service from higher level and supports
multi-task processing, without the need for low level infrastructure support.
To evaluate the effects of existing constraints on our hypothesis, we
implement a relatively comprehensive suite of ten real high performance
computing tasks and produce multiple bitstreams per task for fair evaluation
of the various schemes. We then evaluate and compare our proposed
partitioning scheme to previous work in terms of achieved system throughput.
The simulated results for large queues of mixed intensity (compute and
memory) tasks show that the proposed approach can provide higher than
3x system speedup. The execution on the Nallatech 385 FPGA card for
selected cases suggest that our approach can provide on average 2.9x
and 2.3x higher system throughput for compute and mixed intensity
tasks while 0.2x lower for memory intensive tasks.

Keywords: Cloud Environments - Data Centers - Space Sharing

1 Introduction

Cloud computing offers users ubiquitous access to a shared pool of resources,
through centralized data centres. With increasing device sizes and efficiency for
high performance computing, there has been an increased interest in recent times
to integrate Field Programmable Gate Arrays (FPGAs) in data centres [5][11].
However, their architecture and programming environment presents a different
resource sharing model when compared to software programmable accelerators.

The challenge lies in sharing the device space by accommodating multiple
heterogeneous tasks at one instance of time. Heterogeneous tasks in our context
are defined by heterogeneity in resource utilization (compute, memory, logic)
and execution time. Optimization of system’s resource utilization in time and
space when executing these tasks in a shared environment is a challenging task,
leading to suboptimal compute density and system throughput.

2 Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis

In software-based systems, a runtime approach can map a task to any portion
of underlying hardware. This together with microsecond latency context switching
between tasks, provides flexible sharing of resources. For FPGAs, the tasks are
custom designed and mapped spatially on the device off-line. This, along with the
reconfiguration overhead associated with task initiation, places extra constraints
for efficient utilization of FPGA resources [9)].

A common way of sharing the FPGA space is to partition it into partially
reconfigurable regions (PRRs) which can be configured independently in time
and partially in space. Flexibility in space is partial as incoming tasks can only be
placed in one of the statically defined PRR via dynamic partial reconfiguration
(DPR) at runtime. This means that tasks with diverse resource needs are mapped
to the same homogeneous PRR which may result in inefficient resource utilization.
To address this challenge, researchers have looked at providing more flexibility
in space using heterogeneous PRRs and multiple bitstreams for a single task [3].
Although this approach increases the system throughput via intelligent off-line
and runtime PRR design, the same intrinsic idea of mapping more than a single
task to the same PRR still may lead to inefficient resource utilization.

This work first analyses the effect on compute density due to constraints
imposed by PRR. To achieve this, we create multiple bitstreams per tasks for
ten real high performance computing (HPC) tasks, for domains such as graph
analytics, dense linear algebra, scientific computing, etc., allowing exposure of
the area-throughput trade-off. This design space exploration (DSE) allows us to
estimate the average utilization of heterogeneous resources (Logic Cells, DSPs,
BRAMsS) in a homogeneous PRR. Furthermore, along with the help of an exhaustive
simulator, the DSE allows us to gauge the effect on system speedup for various
PRR optimizations of runtime scheduling using real HPC tasks.

Secondly, we also evaluate an alternative approach to PRR by hypothesizing
that a higher compute density can be achieved via static partitioning and mapping
(SPM) of heterogeneous bitstreams. The SPM looks to provide complete spatial
independence as heterogeneous tasks can be mapped to custom designed regions
utilizing all of the resources on the FPGA. This only provides partial time
independence, however, as tasks sharing the FPGA need to be reconfigured and
executed at the same time, resulting in stalling by the longest running task.

Thirdly, our work compares both approaches while varying system design
parameters. To achieve this, the simulator allows scheduling of large task queues
with varying execution times to estimate average system speedup. Moreover,
implementation of selected cases on an actual FPGA allows us to analyze the
constraints of both approaches when targeting compute or memory intensive
tasks, and report on performance in terms of System Throughput (STP), a
metric defined specifically for multi-task workloads processing. The above mentioned
DSE and PRR optimisations enable a fair comparison of both approaches.

The results show that SPM can provide a higher compute density while
allowing for bitstreams generation from a higher level Open Computing Language
(OpenCL) representation. SPM can be complemented with data center workload
characterization [1] to select the best approach for varying environments. Statically

Title Suppressed Due to Excessive Length 3

. ——Static Region
I Regional Clock Region 0 e == Available Area for Task Logic
ARRNEEN] Ny "' || = Clock Boundaries
] ==Homogeneous Regions
== =Heterogeneous Regions
[l Logic Cell
[0 DSP
[BRAM

I ddr3b_region
N

| L

Fig. 1. FPGA Partitioning for PRR

generated high compute density bitstreams fit well with the idea of providing
users with a library of optimized IPs allowing tasks to access the FPGA resource
as a service (Amazon Marketplace for Amazon FPGA Image).

We first discuss the motivation of this work based on previous studies in
Section 2. We then present our implementation and evaluation methodology
in Section 3 and our detailed experimental evaluation in Section 4 followed by
conclusions in Section 5.

2 Background and Motivation

Cloud services are being used by range of users with diverse computing requirements
which vary with task size and type [16]. In FPGA, the compute versus memory
intensity of the task, suggests the need for FPGA sharing by heterogeneous
tasks in order to achieve maximum system utilization. For sharing, the FPGA
is partitioned into rectangular PRRs which are configured typically with a new
bitstream via DPR, independently of the processing going on in other PRRs [17].
This provides independence in time to each PRR, such that a task A running in
a PRR can be instantly replaced by task B, when task A finishes.

The design of PRRs is challenging since the spatial distribution of various
types of resources on FPGA is not uniform or homogeneous (Fig. 1). The whole
FPGA can be represented as a matrix, with dimensions X xY, of tiles where each

4 Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis

tile, z;y;, represents a resource type; logic cell, DSP block or BRAM. Resources
of same type form the columns, Yasp, Yoram, €tc., of a matrix where each row, x;,
contains at least 1 tile involving all type of resources. Furthermore, the FPGA is
divided into multiple clock regions across both the vertical and horizontal axes,
where the crossing of the region boundary requires custom logic implementation.

Now since the tasks are physically mapped to this diverse distribution of
resources, their relocation at runtime is challenging, particularly along the horizontal
axis [6]. For more complex mappings, modern bitstream relocation techniques
[14] allow for relocation from one region to another vertically only, due to
the column-based FPGA architecture, whilst permitting routing of interface
connections and clock. However, such a relocation scheme cannot happen from
a non-clock crossing region to a clock crossing region and vice versa. Thus,
relocation is only possible among homogeneous regions along the y-axis and at
discrete starting points with a step size equal to height of clock regions (Fig. 1),
in line with work on partially reconfigurable systems for independent tasks [17].

These mapping constraints require PRRs to be majorly homogeneous and
along the y-axis which may lead to inefficiency in resource utilization by heterogeneous
tasks. Firstly, after omission of the static area used for memory interconnects
near 1/O pins and other hard static logic, the homogeneous region along the
y-axis can be as low as 60% area of the FPGA [17]. The concept is explained
in Fig. 1 where the marked boundaries represent the total available area and
area distribution for homogeneous PRRs and heterogeneous PRRs (discussed in
Section 3.2) after considering static resources and clock regions. In this case, PRR
area is limited to 80 rows of resources compared to total 128 rows of FPGA
along the vertical axis, with further limitations on horizontal axis. Secondly,
within the rectangular boundaries defined for any task, the actual area being
allocated to task may be lower than the area available in that region, namely
38% - 51% [18] which is similar to our own implementation of HPC tasks (Section
4). This is worsened in case of fixed PRRs due to diverse spatial placement of
different types of resources.

Whilst mapping optimizations using PRRs is well researched [3][17], for the
first time, this work intends to analyze the effect on compute density caused by
the constraints of PRRs and inefficient utilization of resources when mapping
heterogeneous tasks. Firstly, we create a large design space using a range of real
high performance computing tasks while exposing the area-throughput trade-
off, using the biggest selection of the most relevant HPC tasks to date [4][15].
This allows us to quantify the heterogeneity in resource utilization by modern
workloads when mapping to FPGA and to project the need for heterogeneous
mapping. The DSE also allows us to quantify various existing PRR optimizations
in literature using a range of real workloads.

We then propose SPM of tasks in heterogeneous regions as a mean to achieve
higher compute density. Although the technology has supported this approach,
this is the first time it has been analyzed from a high level perspective for use in
space sharing FPGAs in data centers. The approach aims to provide complete
spatial independence for highly optimized mapping on account of partial time

Title Suppressed Due to Excessive Length 5

Various - " OpenCL
Design Spaci Exploration Qrameters

PRR Optimizations / Execution . Regression Hardware
Time Variations / Task Queues - Simulator Model Execution
¥ ¥ v
Speedup Tasks’ Heterogeneity System Throughput

Fig. 2. Summary of Implementation and Evaluation Methodology

independence. Time independence is partial as all tasks need to be reconfigured
at the same time. We aim to quantify this and comment on design parameters
that affect system performance. Finally, we fairly compare both approaches using
the DSE on a flexible simulator as well as real hardware execution measurements.

3 Implementation and Evaluation Methodology

In this section, we describe multiple aspects of the design environment (Fig. 2).
In particular, we start with multiple bitstreams generation for each task and then
define the optimizations applied to PRR mapping. Finally, we briefly define our
simulator and metrics used for evaluation.

3.1 Multiple Tasks’ Bitstreams with Area-Throughput Trade-off

A key goal is to generate multiple hardware bitstreams of the same task that
provide a speedup corresponding to the resources used. Using an area-throughput
curve, this allows for precise quantification of the variation in compute density
with resource utilization due to different partitioning strategies.

To achieve this, we make use of the OpenCL framework for heterogeneous
parallel programming that both provides abstraction of parallelism and a high
level DSE model for tuning the underlying hardware mapping. In addition to
OpenCL, we use general high level synthesis parameters, to scale the task over
multiple parallel compute units (CUs); multiple pipelines can be defined via a
Single Instruction Multiple Data (SIMD) parameter, whilst the key compute
intensive loops can be unrolled via the UNROLL (U) parameter. For some
tasks, we vary task-specific parameters such as block size or number of rows,
where these define the parallel processing of a defined parameter size. All these
parameters allow scaling of the underlying hardware by varying the number of
custom parallel data paths for each task.

3.2 Partially Reconfigurable Regions Mapping Optimizations

Using the same created design space, we can quantify the various optimizations
presented in earlier studies and which are important to fairly compare PRR with
SPM. The optimizations are mainly targeted at avoiding segmentation, causing
vacant regions of FPGA, by varying the sizes of used bitstreams. Basic PRR

6 Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis

] ! Design Space Bitstreams
Exesg\slig?igr:me Explgora'zon Parameters OptirEiRzF;tions
Randomly &
Constraints Generated Plgﬁe;r?kint «— Configuration <= PRR or SPM
Task Queug l'
Bitstream Area Available Area
Limits Sequencing and Resources
Speedup

Fig. 3. Runtime Simulator

mapping generates homogeneous regions as well as a single bitstream for each
task corresponding to that region. Among the optimizations, the first one is
called Elastic resource allocation which looks at adjacent PRR regions. If they
are free, the approach attempts to fit larger bitstreams of the same task in this
combined region, thus replacing the current task bitstream with a larger one to
gain a speedup [17].

Another way to increase mapping flexibility is to partition the FPGA into
heterogeneous PRRs which offer different number of resources[3] [5]. The tasks
are then custom designed for one of the PRRs. Heterogeneous PRRs can be
defined by including a different ratio of each heterogeneous resource type. However,
in our case, the device size is not big enough to benefit from such an approach, so
we define heterogeneous PRRs by varying the number of each type of resources
while their relative ratios remain the same (Fig. 1). We define the areas on top of
homogeneous regions which means it can either be configured as homogeneous
or heterogeneous, allowing flexibility in mapping options from the generated
design space. Another optimization that is made possible by heterogeneous PRRs
is using smaller (contracted) bitstreams for tasks when none of the original
bitstream can be fit into a region [3].

Finally, we provide simulated results for continuous y-axis, i.e. the hypothetical
performance gains that can be made if the bitstream relocation step size is
reduced to a single row by future technology support. At present, this can be
achieved by generating multiple bitstreams, equal to the number of rows within
each clock region, by varying starting y-coordinates for each unique bitstream.

3.3 Runtime Simulator and Hardware Implementation

The key configurable parameters and functional blocks of the runtime simulator
are summarized in Fig. 3. The DSE provides the bitstreams’ characteristics such
as area and resource utilization, and relative speedup. This along with tasks’
parameters, such as their execution time and limitation on resource utilization
of bitstreams as per the available resources, is used to generate a task queue
which is then fed into task placement and sequencing modules. For evaluation
of average speedup, these modules then treat the task queue mapping as a
rectangle fitting problem with configurations set for continuous y, homogeneous

Title Suppressed Due to Excessive Length 7

and heterogeneous PRRs along with other mapping optimizations or use SPM,
while keeping under the overall available resources. As for the sequencing of
tasks, we use a basic first fit heuristic which takes the task queue and tries to fit
tasks in incoming sequence.

For evaluation of compute density on hardware, the bitstreams for SPM have
been generated using Intel OpenCL SDK for FPGA, and all tasks run at the same
frequency. This, however, is not a limitation of design as varying frequencies can
be used for statically generated task cores. Also for PRR evaluation, OpenCL is
used to generate the intermediate design files and constraints file, then modified
to include bounding rectangular regions, as per defined PRRs for logic placement
before generating the final bitstream. Similar efforts were used to map the largest
possible bitstream configurations both for PRR and SPM within their respective
area constraints.

3.4 Metrics

Assessing the system performance of a multi-task workload running in parallel on
a single hardware is challenging as the performance of individual tasks may not
entirely relate to system performance. We use two different metrics for simulated
and hardware results to have a comprehensive assessment. First, simulation of
large task queues allows us to project average speedup, measured as variation in
execution time of complete queue. Secondly, for measuring compute density, we
use various configurations of bitstreams of same tasks implemented on hardware
which consume varying execution times to process the same data size, as well
as allow to share FPGA with different number of tasks. We then use the ST P
metric [7] as defined by:

STP=3 NP.=) ~ip (1)
i=1 i=1 "

where N P is each task’s normalized progress defined by the number of clock
cycles it takes in single (CT) task mode when the task has all of the resources
of FPGA, compared to multi (C}M*) task mode, when it is sharing the space
with other tasks. Here, n defines the number of tasks sharing the FPGA.

3.5 Evaluated Tasks

We have considered a number of tasks belonging to various computing dwarfs [2]
and application domains with varying ratio of compute and memory operations.

a) Page Rank (PR) is a graph analysis algorithm used for link analysis of
web pages, social networks, etc [13].

b) Alternative Least Squares (ALS) based Collaborative Filtering is a verified
approach based on the aggregated behavior of large number of users used to
develop recommender systems for commercial domains such as Netflix [19].

¢) Lower Upper Decomposition (LUD) is an important dense linear algebra
used for solving systems of linear equations with reduced complexity [4].

8 Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis

Table 1. Use Cases Characteristics where the step size is 2 X, unless otherwise specified.

Use Case Dwarf Data Size Bitstreams Scaling Speedup
PR Sparse Linear Algebra Pages: 64K (CU: 1,24) x (U:1,2,4) 6%
ALS Sparse Linear Algebra Users: 4K (CU: 1, 4)x(U: 1, 4) 2x

CU1 x (U1, U2, U4, U8,
BOP Structured Grids Options: 2K U16); CU2xU16; (CU: 3, 21X
4, 5)xU8
BFS Graph Traversal Nodes: 64K U:1-16 5x
SpMV Sparse Linear Algebra XxVY: 4K x 4K U:1-32 190x
. XXYXZ: .
FDTD Structured Grids 512 x 512x 1K Block Size: 1 - 16 13 %
s) CU1x(U: 1 - 16); (CU:
LUD Dense Linear Algebra XxY: 4Kx4K 2, 3)xU16 18x
VD Structured Grids Resolution: 4K Parallel Rows: 1 - 32 8x
o . SIMD1x (U: 1 - 64);

SGEMM Dense Linear Algebra XxY: 4Kx4K SIMDAx (U: 32 - 64) 204 x

NW Dynamic Programming X&Y: 4K Block Size: 2 - 128 33 X%

d) Binomial Option Pricing (BOP) is a key model in finance that offers a
generalized method for future option contract evaluation and for options with
complex features [12].

e) Breadth First Search (BFS) is a challenging and important graph traversal
algorithm forming the basis of many graph-processing workloads [4].

f) 3 Dimensional Finite Difference Time Domain (FDTD) is an important
numerical method for electromagnetic propagation modeling in space [10].

g) Sparse Matriz Vector Multiplication (SpMV) is an important sparse linear
algebra algorithm used in scientific applications and graph analytics, etc [8].

h) Matriz Matriz Multiply (SGEMM) is used in various compute intensive
algorithms and benchmarks [8].

i) Video Downscaling (VD) is used by a range of media streaming services
for real-time bandwidth reductions [10].

j) Needleman-Wunsch (NW) is a bioinformatics optimization algorithm used
for protein sequence alignment [4].

3.6 System Hardware

The DSE has been accomplished via Intel OpenCL SDK for FPGAs v 16.1,
performed on a Nallatech 385 with an Intel Stratix V. GX A7 FPGA chip and
8GB DDR3 memory. The A7 chip has 234,720 ALMs, 256 DSPs as well as 2,560
M20K BRAM blocks. The runtime simulations are performed via Python v3.3.7.

4 Results And Analysis

Our implementation of real tasks is given in Table 1. Besides providing real
area numbers for spatial mapping problem, the implementation provides area-
throughput graphs for HPC tasks. To measure the speedup, the baseline throughput,

Title Suppressed Due to Excessive Length 9

Table 2. Average Resource Utilization when Using PRRs

R . Custom Regions Homogeneous PRRs
CSOWCE Avg. Util. Min. / Max. Util. Avg. Util. Min / Max Util.
Logic 52.54% 30.36% / 79.40% 37.12% 18.47% / 61.19%
]1:3{121(3[{ 60.56% 15.49% / 95.82% 45.05% 10.07% / 91.91%
DSPs 32.33% 0.0% / 97.0% 26.30% 0.0% / 97.0%

corresponding to the lowest area bitstream, is defined by the serial pipelined
benchmark implementation. The maximum throughput is defined by the largest
bitstream, limited by FPGA resources. We have generated 4 — 9 bitstreams
per task providing 2 — 204X maximum speedup compared to slowest bitstream
with speedup for each task mentioned in Table 1. The table also mentions the
parallelization used for each task, such as number of compute units, unrolling of
main computing loop, using SIMD pragma for work items parallelism and data
block size variation where elements in a block are executed in parallel and relate
to resources utilized in mapping. The generation of multiple bitstreams is a key
step in evaluating the mapping strategies as we discuss in coming sections.

4.1 Analysis of Heterogeneous Tasks

Using the DSE, we analyse the heterogeneity in resource utilization by tasks. We
mainly focus on three resources, Logic cells, DSPs and BRAMs and evaluate the
inefficiency in resource utilization caused by the rectangular and fixed size shapes
of PRRs resulting in homogeneous regions. We present percentage utilization of
resources from two perspectives.

The first case calculates percentage resource utilization compared to the
bounding box where dimensions are custom defined for each bitstream, as per
bitstream’s resource requirements. We use all of the bitstreams which are smaller
than the largest PRR. The second case deals with percentage utilization compared
to the PRRs available on the FPGA. We use 4 sizes of heterogeneous PRRs
(Fig. 1).

In total, there are 80 rows of FPGA that can be configured as a single region
(PRR-1) or a set of two homogeneous regions of 40 rows each (PRR-2). We
define two more heterogeneous PRRs, namely 30 (PRR-3) and 50 (PRR-4) rows,
based on the sizes of generated bitstreams. Note that either the homogeneous or
heterogeneous PRRs can be used at a single instance of time.

We select bitstreams for each task that would maximize the resource utilization
in each of 4 PRRs, i.e. up to 4 bitstreams per task and give average percentage
resource utilization by these bitstreams compared to their respective PRRs. The
measurements in Table 2 show that due to the homogeneous nature of PRRs, the
logic, DSP and BRAM utilization is limited to 37%, 26% and 45% on average.

10 Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis

4.2 Runtime Simulation

In this section, we use our simulator to analyse various mapping strategies.
Firstly, we examine the speedup achieved by various improvements on the PRR
mapping, as explained in Section 3.2. We use three different mapping strategies,
namely the continuous y-axis, heterogeneous PRRs and homogeneous PRRs and
their respective bitstreams (Fig. 1). Please note that this is a study of resource
utilization efficiency of various mapping approaches and does not consider data
transfers from host CPU memory to DRAM memory on the FPGA board.
Furthermore, the DRAM to FPGA on-chip memory transfers are not considered
as bottlenecks for simulation purposes, but their effect is discussed in more detail
in next section using real execution on hardware.

The runtime scheduler performs Elastic and Contract optimizations, as explained
in Section 3.2. We use the actual measured relative throughput of various bitstreams
of tasks to calculate the new execution time of tasks. For Contract, we found
out that if the difference in speedup for a smaller bitstream replacing the bigger
is too large, the total execution time increases rather than decrease. Thus, we
limited the allowed speedup degradation for smaller bitstreams to 5x.

The graphs in the Fig. 4 show the speedup achieved for various configurations.
Generally, Elastic is more useful with gains up to 1.24x whereas the best gain
for Contract is 1.05x. Optimizations benefit more on heterogeneous mapping
to tackle segmentation, hence, the gain is negligible for our case of only two
heterogeneous regions while no gain is achieved for homogeneous regions.

Next we investigate gains made by SPM in comparison to PRR. For the
SPM, we either use the same region as used for PRR (Homogeneous Regions in
Fig. 1) and call it Partial Static or use all of the available area for task logic
(Fig. 1) and call it Whole Static. This approach helps to differentiate between
the speedup achieved by heterogeneous mapping in the same region as well as
the gains made by the availability of extra logic when mapping statically.

As the results in Fig. 5 show, a key finding is that SPM gives on average
4.6x higher throughput, measured in terms of total execution time for a set size
of tasks queue. A 2.4x speedup is achieved via heterogeneous mapping while the
rest is achieved via use of higher resource availability. The results show that if the
y-axis can be made continuous, then a throughput gain of 2x can be achieved.

So far, the reported speedup numbers have considered an ideal scenario
for SPM by considering all of the tasks sharing the FPGA at any time, have
same execution time. This is not the case for real workloads. Next, we vary
the execution time of tasks and report on speedup achieved. We use a uniform
distribution for execution time and vary the range of distribution.

The results shown in Fig. 6 depict a surprising trend. Even with increasing
range of execution time by up to 32x (beyond this range a reconfiguration
overhead would become negligible for most tasks), the speedup decreases but
remains higher than 3x. This is because on average, the device under test may
be used by 3 or less tasks using SPM, as constrained by the size of FPGA and
tasks bitstreams. Thus, a task may stall up to two tasks or a maximum of about
50% resources with an average much lower than that. Stalls by smaller tasks

Title Suppressed Due to Excessive Length 11

1.35 1 [
.............. }|

1.30 A

1.25 A
51201
3 1.15 - Continuous Y-axis - Elastic --e+ Heterogeneous PRRs - Contract
& Continuous Y-axis - Contract —-+=- Homogeneous PRRs - Elastic

1.10 4 --4--- Heterogeneous PRRs - Elastic —e- Homogeneous PRRs - Contract

1.05 A

1.00 b ¢

0 512 1024 2048

Number of Tasks

Fig. 4. Speedup achieved by Optimization of PRR mapping on various bitstreams

___________ I~

4.5 - ~__~___-~I

4.0 A
a —+— Whole SPM / Continuous Y-axis Partial SPM / Heterogeneous PRRs
§ 3.5 9 —e— Partial SPM / Continuous Y-axis =+= Whole SPM / Homogeneous PRRs
e Whole SPM / Heterogeneous PRRs —e=- Partial SPM / Homogeneous PRRs
» 3.0 1

2.5 1 ' ;

e ——————— e —————— -
2.0
0 512 1024 2048
Number of Tasks
Fig. 5. Speedup achieved by SPM versus PRR Mapping

4.0

3.5 1
= 3.01 Continuous Y-axis —e— PRR —r— Double Sized FPGA - Continuous
D 2.5
(9]
o
(%2} 2.0 4

1.5 A

1.0 1 \’_’_’_(

0 1 2 4 8 16 32
Execution Time Variation Range (x)

Fig. 6. Speedup Variation of SPM with Variation in Execution Times (Tasks = 1024)

are overcome by the higher average compute density and gains made when the
longest running task is not the smallest. However, to gauge the effect of the

12 Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis

approach on bigger devices, we estimate the speedup possible by increasing the
size of available resources while keeping the size of tasks’ bitstream the same.
The results show that for a device double the size, the gains drop below 1 for an
execution time variation greater than 4x. Such a study can help optimize the
number of tasks that may be shared at a single instance of time.

4.3 Evaluation on Hardware

A key limitation of using SPM is the need to generate each multi-task heterogeneous
bitstream separately. This limitation can be overcome partially by benchmarking
cloud and data center workloads to estimate the frequency and data sizes of
incoming tasks [1]. This can help decide the combination of tasks that may
be shared on a single FPGA as well as the percentage resource allocation for
each task. These decisions, apart from helping with a higher resource utilization
on-chip, result in minimizing bottlenecks in off-chip resources, such as DRAM
access. To analyze this further, as well as provide numbers for throughput for
real hardware execution, we discuss some of the extreme cases below using the
ST P metric defined in Section 3.4.

In terms of resource utilization, SPM resulted on average 60%, 59% and 129%
higher logic, BRAM and DSP utilization compared to PRR. Furthermore, Figs.
7, 8 and 9 show the achieved ST P for PRR and SPM for two compute, memory
and mixed (one compute/one memory) intensive tasks, respectively. The graphs
also show the difference in factor between the execution times of both tasks on
the second y-axis. In our experiments, the execution time between both tasks
varied by up to 5108x, 14x and 361x for compute intensive, memory intensive
and mixed tasks. Note that for SPM, NP for each task is calculated using the
time for longest running task.

STP for PRR stays relatively uniform with variation in data sizes while for
SPM it generally reduces with increase in difference of individual execution times.
The results show that for compute intensive and mixed tasks, SPM performs on
average 2.9x and 2.3x better than the PRR mapping, respectively.

For memory intensive tasks, the increase in resource utilization did not result
in a performance increase. This is because the for memory intensive tasks, the
increase in throughput via higher utilization of on-chip compute resources is
limited by external memory access latency and bandwidth. For memory intensive
tasks, PRR has 1.25x higher ST P on average than the SPM.

Finally, for all cases, the trend for SPM is not entirely dependent on the
variation in execution time of tasks sharing the FPGA. This is because it also
depends on the percentage resource utilization as well as the VP of the longest
running task. To explain this further, we present another set of results where we
have 4 tasks sharing the FPGA. However, we focus on a single task, LUD, and
use two different SPM configurations. In SPM 1, LUD has a minimum number
of resources while in SPM 2, it is allocated more such that it has a 10x higher
individual NP in SPM 1 compared to SPM 2. Furthermore, we select data sizes
for the rest of the tasks such that their execution time is similar to each other.
We then vary the data size of LUD (size of square matrices from 128 to 1024 in

Title Suppressed Due to Excessive Length 13

STP

Samples

=
(o)}
X

Execution Time Difference Factor (

Fig. 7. ST P Variation with Data Sizes for 2 Compute Intensive Tasks - MM and LUD

1.1
1.0 n r14
0.9 : 12
s L
0.8 ; 10
e . |s
Vo774 |F B ; —— PRR:
I Lolle e SPM -6
0.6 PO
L a
05 7 H H | 2
0.41 | : : ” : ” nnui,
0 2 4 6 8 10 12
Samples

16

Execution Time Difference Factor (x)

Fig. 8. STP Variation with Data Sizes for 2 Memory Intensive Tasks - ALS and PR

16
e 13 -
1759 = —— PRR R 14
150 ses SPM| L
..

1.25 A “u, 10
e 1 s

¥ 1.00 1 I nom v
H6
0.75 - — L4
0.50 - |)

— N
o A R

0 2 4 6 8 10 12

Samples

X

Execution Time Difference Factor

Fig.9. STP Variation with Data Sizes for One Compute and One Memory Intensive

Tasks - LUD and PR

14 Umar Ibrahim Minhas, Roger Woods, and Georgios Karakonstantis

16
—+— PRR - Data Set 1 —e- SPM 1 - Data Set 1
0.7 1 =+= PRR - Data Set 2 --e- SPM 2 - Data Set 2 L 14 —
- X
[Data Set1 ” 5
0671 | Data Set 2 F12 5
L
0.5 1 - 10 ©
et
a 2
f 041 83
£
0.3 1 =
=
o
F4 =
0.2 1 !
V]
L2
0.1 1
0

Samples

Fig. 10. STP Variation for PRRs and Static Designs for Two Configurations using
Four Tasks - SPMV, NW, LUD, PR

steps of 2x). The resulting ST P presented in Fig. 10 shows that for the SPM
1, the PRR performs 1.9x better than the SPM while for SPM 2, the SPM
performs 1.2x better than PRR for the same data sizes of LUD. Also even for
the second case, SPM performs worse for first sample projecting that sharing 4
tasks on this size of an FPGA reduces the average system throughput.

5 Conclusion

This work analyses the constraints of mapping bistreams of heterogeneous tasks

to FPGA at runtime and their effect on compute density when using partially
reconfigurable regions for space shared multi-task processing. Static partitioning
and mapping of tasks to achieve higher speedup and system throughput is
proposed and several aspects of each approach are evaluated via design space
exploration using a range of HPC tasks, a comprehensive simulator and evaluation

on hardware. Static partitioning provides up to 2.9x higher system throughput
and facilitates a completely software based implementation of a multi-task computing
environment without requiring low level support for PRR.

Acknowledgment

The work was supported by the European Commission under European Horizon
2020 Programme, grant number 6876281 (VINEYARD).

Title Suppressed Due to Excessive Length 15

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

. Abdul-Rahman, O.A., Aida, K.: Towards understanding the usage behavior

of Google cloud users: the mice and elephants phenomenon. In: International
Conference on Cloud Computing Technology and Science. IEEE (2014)

Asanovic, K., et al.: The landscape of parallel computing research: A view from
Berkeley. Tech. rep., Technical Report UCB/EECS-2006-183, EECS Department,
University of Berkeley (2006)

Charitopoulos, G., Koidis, 1., Papadimitriou, K., Pnevmatikatos, D.: Run-time
management of systems with partially reconfigurable FPGAs. Integration, the
VLSI Journal 57 (2017)

Che, S., et al.: Rodinia: A benchmark suite for heterogeneous computing. In:
International Symposium on Workload Characterization. Ieee (2009)

Chen, F.; et al.: Enabling FPGAs in the cloud. In: Conference on Computing
Frontiers. ACM (2014)

Enemali, G., Adetomi, A., Seetharaman, G., Arslan, T.: A functionality-
based runtime relocation system for circuits on heterogeneous FPGAs. IEEE
Transactions on Circuits and Systems II: Express Briefs 65(5) (2018)

Eyerman, S., Eeckhout, L.: System-level performance metrics for multiprogram
workloads. IEEE Micro 28(3) (2008)

. Gautier, Q., et al.: An OpenCL FPGA benchmark suite. In: 2016 International

Conference on Field-Programmable Technology. IEEE (2016)

Huang, M., et al.: Programming and runtime support to blaze FPGA accelerator
deployment at datacenter scale. In: Symposium on Cloud Computing. ACM (2016)
Intel: Developer zone. Intel FPGA SDK for OpenCL. https://www.intel.com
(2018)

Minhas, U., et al.: Nanostreams: A microserver architecture for real-time analytics
on fast data streams. IEEE Transactions on Multi-Scale Computing Systems (2017)
Minhas, U.I., Woods, R.F., Karakonstantis, G.: Exploring functional acceleration
of OpenCL on FPGAs and GPUs through platform-independent optimizations.
In: International Symposium on Applied Reconfigurable Computing. pp. 551-563
(2018)

Page, L., et al.: The pagerank citation ranking: Bringing order to the web (1998)
Pham, K.D., Horta, E., Koch, D.: Bitman: A tool and API for FPGA bitstream
manipulations. In: Design, Automation & Test in Europe Conference & Exhibition.
pp. 894-897. IEEE (2017)

Sengupta, D., et al.: Scheduling multi-tenant cloud workloads on accelerator-based
systems. In: Supercomputing Conference. IEEE (2014)

Vaishnav, A., Pham, K.D., Koch, D.: A survey on FPGA virtualization. In:
International Conference on Field Programmable Logic and Applications (2018)
Vaishnav, A., Pham, K.D., Koch, D., Garside, J.: Resource elastic virtualization
for FPGAs using OpenCL. In: International Conference on Field Programmable
Logic and Applications (2018)

Vipin, K., Fahmy, S.A.: Architecture-aware reconfiguration-centric floorplanning
for partial reconfiguration. In: International Symposium on Applied Reconfigurable
Computing. Springer (2012)

Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative
filtering for the netflix prize. In: International Conference on Algorithmic
Applications in Management. Springer (2008)

