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Abstract—Emerging cloud applications like machine 
learning, AI and big data analytics require high performance 
computing systems that can sustain the increased amount of 
data processing without consuming excessive power. 
Towards this end, many cloud operators have started 
deploying hardware accelerators, like FPGAs, to increase 
the performance of computationally intensive tasks but 
increasing the programming complexity to utilize these 
accelerators. VINEYARD has developed an efficient 
framework that allows the seamless deployment and 
utilization of hardware accelerators in the cloud without 
increasing the programming complexity and offering the 
flexibility of software packages. This paper presents a 
modular approach for the acceleration of data analytics 
using FPGAs. The modular approach allows the automatic 
development of integrated hardware designs for the 
acceleration of data analytics. The proposed framework 
shows the data analytics modules can be used to achieve up 
to 3.5x speedup compared to high performance general-
purpose processors.  
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I. INTRODUCTION  

As the traffic in the data centers, continues to increase 
rapidly, data center operators are looking for novel systems 
that can provide much higher performance than the typical 
processors without consuming excessive amounts of power. 
In the domain of embedded systems, vendors and designers 
have embraced the heterogeneity paradigm in order to 
provide high performance systems that are at the same time 
are energy efficient. Typical processor (high performance 
and low power) are used to provide the flexibility and 
support the typical software stack, while specialized co-
processors are used to offload the processor for the most 
widely used tasks such as encryption, compression, and 
signal processing. 

Currently, it seems that cloud computing and data center 
operators are embracing the advantages of heterogeneity in 
order to provide high performance and energy-efficient 
systems. Data center operators in the last few years started 
deploying GPGPUs in hyperscale data center in order to 
provide to the cloud users high performance systems and 
keep the flexibility of the processors. In the last couple of 
years, data center operators are also looking on how to allow 
the cloud users to utilize the performance of specialized 
systems by deploying FPGAs in the data centers. 

Although FPGAs can provide much higher performance 
than GPUs in several applications, FPGAs were not widely 
deployed so far due to the high programming complexity. 
FPGAs had to be programmed (configured) using hardware 
programming languages such as VHDL and Verilog that 
describe the circuits that are used to perform a specific task. 
Hardware programming languages are much more difficult 
than C/C++ and Java and therefore , FPGA were mainly used 
for embedded systems and for modules that are based on a 
specific standard (compression or encryption) or for 
application in which you need high performance but the 
volume of the systems is low and you cannot afford to 
develop and ASIC. 

In the past, there were several efforts (both from 
academia and industry) to program the FPGAs using high 
level languages like C/C++, Java and Python. However, most 
of these efforts lack the efficiency and the performance of 
the VHDL or Verilog diminishing the advantages for the 
FPGAs. However, in the last few years, the larger FPGA 
vendors (Altera which bought by Intel) and Xilinx started 
supporting the programming of FPGAs using OpenCL 
[1][2][3]. In cases that the application is mainly data-driven, 
OpenCL can provide similar performance with the hand-
written modules developed in VHDL or Verilog. The use of 
OpenCL for programming the FPGAs fostered the 
development of a new market. The market of utilization to 
FPGAs in cloud computing where the cloud users can 
program the FPGA without getting the design complexity of 
hardware description languages. 

Although that programming the FPGAs with OpenCL is 
much easier than hardware description languages, still cloud 
users prefer to use more widely used languages like python, 
Scala and Java. Therefore, the most promising approach for 
the widely deployment of FPGAs in the cloud is the 
decoupling of the cloud users from the FPGA developers 
through the use of modules. The use of a marketplace is the 
most efficient way to allow cloud developers to utilize 3rd 
party FPGA modules in order to speedup their applications 
without any prior knowledge of FPGAs. The use of a 
marketplace for the FPGA in the cloud has sparked a new 
ecosystem and a new emerging market; acceleration as a 
service. Amazon AWS has already started providing into its 
market place 3rd party FPGA modules for their FPGAs. 
Accelize is another company that provided a marketplace for 
FPGAs that allows these modules to be deployed to any data 
center that utilizes FPGAs. In the domain of the research 
efforts, VINEYARD [5] has initiated a marketplace for 
opensource modules for the research community. Companies 
like InAccel, rENIAC and Falcon Computing develop FPGA 



modules that can deployed in FPGAs that are hosted in the 
cloud operators like Amazon AWS, Alibaba Cloud and 
Huawei. Accelize and Amazon already provide marketplaces 
for these FPGA modules. Cloud developers can browse the 
marketplaces and rent the FPGA modules in the form of IP 
core. Then the cloud users can select in which data center to 
deploy the accelerators based on the cost, availability etc. All 
of these companies provide a wide range of IP cores. For 
example, InAccel provides ready to use FPGA modules for 
machine learning applications like logistic regression, k-
means clustering and recommendation engines. The use of a 
library-based approach can be used to foster the widespread 
adoption of hardware accelerators in the cloud. The use of 
easy-to-use modules that can offload the typical processor 
without changes in the original code can be the preferred 
way to help the utilization of accelerators.  

In this paper we first give an overview of the high-level 
framework of the VINEYARD and then we present a use-
case on the acceleration of data analytic application. We 
present the development of a modular approach for the 
acceleration of data analytic application based on 
acceleration modules for the most widely used tasks in data 
analytic applications.  

II. THE VINEYARD ACCELERATED FRAMEWORK 

VINEYARD, a EC-funded project, aims to allow cloud 
users to easily utilize accelerators (FPGAs, and dataflow 
engines) in heterogeneous data centers in the same way as 
software packages and with the same flexibility as any other 
cloud services. VINEYARD provides an integrated 
framework that abstract the main hardware accelerators 
drawbacks such as resourcing, scheduling, programming and 
utilization of the accelerators, thus making easier the 
utilization of the FPGAs. 

VINEYARD provides the required APIs that enables the 
utilization of the heterogeneous infrastructures without any 
other modifications on the applications. Some of the tasks 
such as sorting of data, encryption, compression, pattern 
matching, etc. are extremely computationally intensive. 
These tasks have been implemented in hardware as 
customized intellectual-property (IP) accelerators that can 
achieve much higher performance with lower power 
consumption. These hardware accelerators are stored in an IP 
repository (VineStore) that interface with the VINEYARD 
resource manager and scheduler. For each application there 
are several versions of the accelerators based on the available 
platform (FPGA, DFE, and Xeon Phi). 

To interface with hardware accelerators, vendor specific 
libraries are used for the low-level communication with the 
hardware resources. (e.g. Xilinx's SDAccel and Intel's OPAE 
library [8]). On top of these interfaces, VINEYARD has 
developed FPGA drivers that are required for the 
communication with the vendor specific libraries. On top of 
the accelerator drivers, VINEYARD has developed the 
VINEYARD controller (VineController) that allows the 
abstraction of the accelerator drivers from vendor-specific 
libraries and the utilization of the accelerators from high 
level programming frameworks.  

For the cloud computing applications, the Software stack 
of each node contains the VMs that are running on the 
processor, the Local scheduler that dispatches the job to the 
local accelerators, the VineTalk that allows the virtualization 

of the underlying hardware resources, and the VineController 
that serializes the jobs to the hardware resources.  

Applications can either use directly the VineTalk [7] and 
VineController for the utilization of the resources or through 
the use of a central scheduler. In the first case, multiple 
applications can share the resources of a single accelerator 
through the virtualization of the resources. The Scheduler 
and the resource manager are used when these applications 
want to access several heterogeneous infrastructures. In that 
case, VineTalk can be used optionally if several applications 
want to share the hardware resources.  

In this paper, we present the architecture and the 
performance evaluation for the data analytics accelerations. 
A modular approach has been developed that allows the 
acceleration of data analytic applications based on the most 
widely-used tasks in data analytics. The main building blocks 
have been developed as IP modules for FPGAs that can be 
used to speedup any data analytic application.  

III. DATA ANALYTICS 

A. Data analytics 

Current trends in big data analytics, with constantly 
increasing data sizes, demand incredibly high computational 
performance. Moving from traditional database systems to 
the Big Data environment, FPGA, as a representative of 
reconfigurable devices, provides a unique opportunity to 
build an efficient query processing platform, by constructing 
high-throughput execution units with the additional aim of 
minimizing reconfiguration overheads and data movements. 

IV. DATA ANALYTIC MODULES 

This section presents the FPGA modules that have been 
developed, so far, but also provides guidance on leveraging 
the functionalities of the Intel FPGA Software Development 
Kit (SDK) for OpenCL. 

A. Sorting 

Sorting an array, or a column, of numbers is a 
continuously active area of research as it is an essential 
primitive operation in many application domains, including 
databases. Quicksort based algorithms have traditionally 
been considered to have the best average case performance 
among software sorting algorithms. However, recent 
advances in CPU, GPU and FPGA architectures have 
brought merge sort based algorithms, like Batcher's ones, to 
the forefront of performance as they are able to exploit new 
parallel architectures more effectively and better utilize the 
limited amount of bandwidth. 

After several experiments with different possible 
approaches, we concluded that Bitonic sort was the best 
algorithm choice for the FPGA sorter implementation, as it 
could utilize more efficiently the available hardware 
resources, maximizing the performance. 

One of the first challenges that we had to face was the 
vectorization of the FPGA kernel, in order to exploit the 
memory locality and the inherit parallelism. The complexity 
of the algorithm and the sequence of the comparisons (at the 
different passes of different stages), however, did not allow 
the Intel tools to perform the vectorization automatically. So 
we performed this vectorization manually, along with several 



special optimizations, eliminating unnecessary kernel 
invocations and leading to a more sophisticated design with 
over 250 lines of additional OpenCL kernel code. 

 

Figure 1 Architecture of Bitonic sorting network with 16 inputs.  

A second important challenge was the modification of the 
algorithm to support arbitrary array sizes (not only power of 
two) without degrading performance and requiring extra 
memory allocation. For that reason, we used a technique 
called 'virtual padding'. Bitonic sort algorithm was modified 
in a way that in each phase the 'extra' values (up to the next 
power of 2) are never moved and thus do not have to exist 
physically. 

B. Hashing 

Hashing is an essential part in several database 
operations, such as joins. The disadvantage of simple hash 
functions is that they produce imperfect data distributions, 
leading to an increased number of collisions. On the other 
hand, robust hash functions produce balanced distribution, 
but they are computationally expensive. As a starting point, 
we focused on MurmurHash algorithms which, along with 
Google’s CityHash and FarmHash families, are state of the 
art hash functions used in the modern computer world. 

The MurmurHash3 FPGA module that we created, takes 
as an input an array of 64-bit keys and outputs an array with 
their 32-bit hashes. The hashing algorithm is basically a 
series of bitshifts, XORs and multiplications and thus is very 
suitable for hardware implementation. Our hardware design 
is fully pipelined, while also 8 parallel hash function units 
are used to exploit the maximum SIMD kernel vectorization. 
Finally, the kernel is manually replicated, with 2 instances of 
the kernel being available for concurrent execution. 

C. Arithmetic and Comparison Operators 

Comparison operators have a key importance in an SQL 
query as they limit (filter) the amount of data for further 
processing, according to the specified condition. Arithmetic 
operators, are also very useful and common, as they perform 
mathematical calculations between two expressions in the 
query. Both types of operators are mostly used in the 
WHERE clause of the SQL statement, while such operations 
are normally performed on a large amount of data (whole or 
partial columns). 

In order to meet the requirements for fast and flexible 
processing, we developed different FPGA modules, one for 
every operation. At a filtering module, for example, an input 
column can either be compared with another input column 
(from the same or another table), or it can be compared with 
a constant. Equivalent functionality is provided by the 
arithmetic modules. 

D. MIN(), MAX() and SUM() Functions 

Aggregation operations, like MIN, MAX and SUM, are used 
to reduce an input set to a single value. Similar to the 
previous units, our FPGA aggregation units are designed to 
take columns as inputs, however their inherit loop-carried 
dependency does not allow the kernel to be pipelined at 
thread level. For the integer aggregations, this dependency 
does not affect the loop pipeline (inside the kernel) and 
successive iterations are launched every cycle. On the other 
hand, this data dependency, combined with the latency of the 
FPGA floating point compare and addition operators, leads 
to an increased loop Initiation Interval (II) and thus to poor 
performance. To enable the compiler to handle such kernels 
that carry out double precision floating-point operations 
efficiently, we used a technique that removes the loop-
carried dependencies by inferring a shift register. 

V. DATA ANALYTIC MODULES 

A. Information on Kernel Types 

ND-Range kernels are built to accept multiple work-
items simultaneously. Kernel throughput is usually reduced 
by the largest total number of iterations of nested loops. A 
large number of threads is usually required to efficiently 
utilize ND-Range kernels. 

For task kernels, the compiler will attempt to pipeline 
every loop in the kernel to allow multiple iterations of the 
loop to execute concurrently. If some loops are not 
pipelined, or not pipelined well, you may not get good 
performance. 

B. Manual and Automatic ND-Range Kernel Replication 

ND-Range kernels that are not automatically replicated, 
using “num_compute_units” attribute, and that do not use 
any work-group information, are by default optimized by 
the Intel compiler, for higher flexibility and performance. In 
such cases, the compiler performs hardware optimizations 
that allow the automatic modification of the local work size 
to match the global work size on launch. In other words, the 
compiler creates a kernel capable of processing an arbitrary 
number of 'single work-item work-groups', in a pipelined 
manner. 

 

 

Figure 2. Automatically replicated ND-Range Kernel. Cores 
represent the multiple compute units. 

On the other hand, kernels with multiple compute units, are 
compiled to behave like an heterogeneous thread pool for 
work-groups that are created by a kernel call on the host. 
Each core will pull a work-group off the work-group queue 
(like a thread pool queue). It will execute the work-group to 
completion and will then pull another work-group from the 



queue. This will continue until all the work-groups for an 
ND-Range kernel submission are complete. 
 
A disadvantage of this scheme is that the work-group size 
has to be big enough to better utilize the hardware pipeline 
and avoid wasted cycles, caused by the pipeline latency, 
each time a work-group starts/ends its execution, but, at the 
same time, small enough to avoid unnecessary memory 
paddings and better utilize the multiple compute units, since 
Intel notes that “You should have at least three times as 
many work-groups as the number of compute units to 
efficiently utilize all compute units.” [6]. In other words, it 
seems that the manual kernel replication is a more 
straightforward solution, as it comes with less restrictions 
and makes optimal use of the hardware pipelined resources, 
however, as we will see in a different section, requires more 
complex handling and manipulation at the host software 
side. 

C. Comments on Vectorization 

Manual vectorization of all the kernels was performed, 
in order to allow optimal usage of the memory bandwidth 
through memory coalescing, but also to perform more 
computations simultaneously, in a SIMD-like manner 
(Single Instruction Multiple Data). It is important to note 
that, the algorithmic complexity of some kernels, like 
BitonicSort, does not allow automatic vectorization, using 
“num_simd_work_items” attribute. In any case manual 
maximum vectorization of the kernels (int16, float16, etc.) 
should be considered, although it may increase the kernel 
programming effort and complexity. 

VI. PERFORMANCE EVALUATION 

The following picture shows the performance evaluation of 
the data analytic modules used in the Arria10 integrated 
FPGA platform from Intel [1]. The figure shows the total 
execution time in 2 processors (SW only solution) and the 
total execution time in the HW-accelerated platform using 
the Arria 10 FPGA and Intel processor integrated into the 
same chip using the UPI interface. The table shows also the 
size of the input and the output dataset that it was used for 
each application. As it is shown in the figure the total 
speedup ranges from 1.2x to 3.5x depending on the 
application and the dataset size. The speedup that is 
measured is the total end-to-end speedup including the 
communication with the software module that is used to 
feed the kernels with the data.  
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Figure 3. Average speedup depending on the category for the 
acceleration of the data analytics suite implemented on the HARP.  

VII. CONCLUSIONS 

Data analytics are widely used in several applications 
such as scientific application, financial applications and 
marketing. However, as the size of the data that need to be 
processed keeps increasing significantly, contemporary 
general-purpose processors cannot process these data in real-
time. Hardware accelerators based on FPGAs can be used to 
speedup significantly data analytics applications and reduce 
the total execution time. In this paper we have shown a 
modular approach in which we have developed the basic 
components that are used in data analytic applications and 
can be used to construct integrated frameworks for the 
complete acceleration of data analytics. The speedup for the 
data analytics varies from 1x to 3.5x for an integrated 
platform that host both the processor and the FPGA in the 
same device. The most important conclusion is that for data 
analytic applications a tight communication mechanism is 
required between the processor and the accelerators in order 
to overcome the overhead of the data transfer for these 
applications. Intel HARP platform and IBM Power8 server 
with CAPI-FPGA interface such as the ones we have 
evaluated offer significant speedup. Accelerators platforms 
that are not tightly coupled to the processors cannot offer 
significant advantage over other platforms due to the 
communication overhead.  
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