
Modular FPGA Acceleration of Data Analytics in
Heterogenous Computing

Elias Koromilasi
NTUA, Athens, Greece

LenXcale, Spain
elias.koromilas@gmail.com

Francisco J. Ballesterosii
Univ. Rey Juan Carlos

Spain

Christoforos Kachris
ICCS-NTUA

Athens, Greece
kachris@microlab.ntua.gr

Patricio Martinez, Ricardo
Jimenez-Peris

LeanXcale, Spain

Dimitrios Soudris
ICCS-NTUA

Athens, Greece
dsoudris@microlab.ntua.gr

i Currently with InAccel, Inc.

ii Work performed in the context of a
contract with URJC funded by LeanXcale.

Abstract—Emerging cloud applications like machine
learning, AI and big data analytics require high performance
computing systems that can sustain the increased amount of
data processing without consuming excessive power.
Towards this end, many cloud operators have started
deploying hardware accelerators, like FPGAs, to increase
the performance of computationally intensive tasks but
increasing the programming complexity to utilize these
accelerators. VINEYARD has developed an efficient
framework that allows the seamless deployment and
utilization of hardware accelerators in the cloud without
increasing the programming complexity and offering the
flexibility of software packages. This paper presents a
modular approach for the acceleration of data analytics
using FPGAs. The modular approach allows the automatic
development of integrated hardware designs for the
acceleration of data analytics. The proposed framework
shows the data analytics modules can be used to achieve up
to 3.5x speedup compared to high performance general-
purpose processors.

Keywords—data analytics, databases, cloud computing,
FPGAs, heterogeneous computing

I. INTRODUCTION

As the traffic in the data centers, continues to increase
rapidly, data center operators are looking for novel systems
that can provide much higher performance than the typical
processors without consuming excessive amounts of power.
In the domain of embedded systems, vendors and designers
have embraced the heterogeneity paradigm in order to
provide high performance systems that are at the same time
are energy efficient. Typical processor (high performance
and low power) are used to provide the flexibility and
support the typical software stack, while specialized co-
processors are used to offload the processor for the most
widely used tasks such as encryption, compression, and
signal processing.

Currently, it seems that cloud computing and data center
operators are embracing the advantages of heterogeneity in
order to provide high performance and energy-efficient
systems. Data center operators in the last few years started
deploying GPGPUs in hyperscale data center in order to
provide to the cloud users high performance systems and
keep the flexibility of the processors. In the last couple of
years, data center operators are also looking on how to allow
the cloud users to utilize the performance of specialized
systems by deploying FPGAs in the data centers.

Although FPGAs can provide much higher performance
than GPUs in several applications, FPGAs were not widely
deployed so far due to the high programming complexity.
FPGAs had to be programmed (configured) using hardware
programming languages such as VHDL and Verilog that
describe the circuits that are used to perform a specific task.
Hardware programming languages are much more difficult
than C/C++ and Java and therefore , FPGA were mainly used
for embedded systems and for modules that are based on a
specific standard (compression or encryption) or for
application in which you need high performance but the
volume of the systems is low and you cannot afford to
develop and ASIC.

In the past, there were several efforts (both from
academia and industry) to program the FPGAs using high
level languages like C/C++, Java and Python. However, most
of these efforts lack the efficiency and the performance of
the VHDL or Verilog diminishing the advantages for the
FPGAs. However, in the last few years, the larger FPGA
vendors (Altera which bought by Intel) and Xilinx started
supporting the programming of FPGAs using OpenCL
[1][2][3]. In cases that the application is mainly data-driven,
OpenCL can provide similar performance with the hand-
written modules developed in VHDL or Verilog. The use of
OpenCL for programming the FPGAs fostered the
development of a new market. The market of utilization to
FPGAs in cloud computing where the cloud users can
program the FPGA without getting the design complexity of
hardware description languages.

Although that programming the FPGAs with OpenCL is
much easier than hardware description languages, still cloud
users prefer to use more widely used languages like python,
Scala and Java. Therefore, the most promising approach for
the widely deployment of FPGAs in the cloud is the
decoupling of the cloud users from the FPGA developers
through the use of modules. The use of a marketplace is the
most efficient way to allow cloud developers to utilize 3rd
party FPGA modules in order to speedup their applications
without any prior knowledge of FPGAs. The use of a
marketplace for the FPGA in the cloud has sparked a new
ecosystem and a new emerging market; acceleration as a
service. Amazon AWS has already started providing into its
market place 3rd party FPGA modules for their FPGAs.
Accelize is another company that provided a marketplace for
FPGAs that allows these modules to be deployed to any data
center that utilizes FPGAs. In the domain of the research
efforts, VINEYARD [5] has initiated a marketplace for
opensource modules for the research community. Companies
like InAccel, rENIAC and Falcon Computing develop FPGA

modules that can deployed in FPGAs that are hosted in the
cloud operators like Amazon AWS, Alibaba Cloud and
Huawei. Accelize and Amazon already provide marketplaces
for these FPGA modules. Cloud developers can browse the
marketplaces and rent the FPGA modules in the form of IP
core. Then the cloud users can select in which data center to
deploy the accelerators based on the cost, availability etc. All
of these companies provide a wide range of IP cores. For
example, InAccel provides ready to use FPGA modules for
machine learning applications like logistic regression, k-
means clustering and recommendation engines. The use of a
library-based approach can be used to foster the widespread
adoption of hardware accelerators in the cloud. The use of
easy-to-use modules that can offload the typical processor
without changes in the original code can be the preferred
way to help the utilization of accelerators.

In this paper we first give an overview of the high-level
framework of the VINEYARD and then we present a use-
case on the acceleration of data analytic application. We
present the development of a modular approach for the
acceleration of data analytic application based on
acceleration modules for the most widely used tasks in data
analytic applications.

II. THE VINEYARD ACCELERATED FRAMEWORK

VINEYARD, a EC-funded project, aims to allow cloud
users to easily utilize accelerators (FPGAs, and dataflow
engines) in heterogeneous data centers in the same way as
software packages and with the same flexibility as any other
cloud services. VINEYARD provides an integrated
framework that abstract the main hardware accelerators
drawbacks such as resourcing, scheduling, programming and
utilization of the accelerators, thus making easier the
utilization of the FPGAs.

VINEYARD provides the required APIs that enables the
utilization of the heterogeneous infrastructures without any
other modifications on the applications. Some of the tasks
such as sorting of data, encryption, compression, pattern
matching, etc. are extremely computationally intensive.
These tasks have been implemented in hardware as
customized intellectual-property (IP) accelerators that can
achieve much higher performance with lower power
consumption. These hardware accelerators are stored in an IP
repository (VineStore) that interface with the VINEYARD
resource manager and scheduler. For each application there
are several versions of the accelerators based on the available
platform (FPGA, DFE, and Xeon Phi).

To interface with hardware accelerators, vendor specific
libraries are used for the low-level communication with the
hardware resources. (e.g. Xilinx's SDAccel and Intel's OPAE
library [8]). On top of these interfaces, VINEYARD has
developed FPGA drivers that are required for the
communication with the vendor specific libraries. On top of
the accelerator drivers, VINEYARD has developed the
VINEYARD controller (VineController) that allows the
abstraction of the accelerator drivers from vendor-specific
libraries and the utilization of the accelerators from high
level programming frameworks.

For the cloud computing applications, the Software stack
of each node contains the VMs that are running on the
processor, the Local scheduler that dispatches the job to the
local accelerators, the VineTalk that allows the virtualization

of the underlying hardware resources, and the VineController
that serializes the jobs to the hardware resources.

Applications can either use directly the VineTalk [7] and
VineController for the utilization of the resources or through
the use of a central scheduler. In the first case, multiple
applications can share the resources of a single accelerator
through the virtualization of the resources. The Scheduler
and the resource manager are used when these applications
want to access several heterogeneous infrastructures. In that
case, VineTalk can be used optionally if several applications
want to share the hardware resources.

In this paper, we present the architecture and the
performance evaluation for the data analytics accelerations.
A modular approach has been developed that allows the
acceleration of data analytic applications based on the most
widely-used tasks in data analytics. The main building blocks
have been developed as IP modules for FPGAs that can be
used to speedup any data analytic application.

III. DATA ANALYTICS

A. Data analytics

Current trends in big data analytics, with constantly
increasing data sizes, demand incredibly high computational
performance. Moving from traditional database systems to
the Big Data environment, FPGA, as a representative of
reconfigurable devices, provides a unique opportunity to
build an efficient query processing platform, by constructing
high-throughput execution units with the additional aim of
minimizing reconfiguration overheads and data movements.

IV. DATA ANALYTIC MODULES

This section presents the FPGA modules that have been
developed, so far, but also provides guidance on leveraging
the functionalities of the Intel FPGA Software Development
Kit (SDK) for OpenCL.

A. Sorting

Sorting an array, or a column, of numbers is a
continuously active area of research as it is an essential
primitive operation in many application domains, including
databases. Quicksort based algorithms have traditionally
been considered to have the best average case performance
among software sorting algorithms. However, recent
advances in CPU, GPU and FPGA architectures have
brought merge sort based algorithms, like Batcher's ones, to
the forefront of performance as they are able to exploit new
parallel architectures more effectively and better utilize the
limited amount of bandwidth.

After several experiments with different possible
approaches, we concluded that Bitonic sort was the best
algorithm choice for the FPGA sorter implementation, as it
could utilize more efficiently the available hardware
resources, maximizing the performance.

One of the first challenges that we had to face was the
vectorization of the FPGA kernel, in order to exploit the
memory locality and the inherit parallelism. The complexity
of the algorithm and the sequence of the comparisons (at the
different passes of different stages), however, did not allow
the Intel tools to perform the vectorization automatically. So
we performed this vectorization manually, along with several

special optimizations, eliminating unnecessary kernel
invocations and leading to a more sophisticated design with
over 250 lines of additional OpenCL kernel code.

Figure 1 Architecture of Bitonic sorting network with 16 inputs.

A second important challenge was the modification of the
algorithm to support arbitrary array sizes (not only power of
two) without degrading performance and requiring extra
memory allocation. For that reason, we used a technique
called 'virtual padding'. Bitonic sort algorithm was modified
in a way that in each phase the 'extra' values (up to the next
power of 2) are never moved and thus do not have to exist
physically.

B. Hashing

Hashing is an essential part in several database
operations, such as joins. The disadvantage of simple hash
functions is that they produce imperfect data distributions,
leading to an increased number of collisions. On the other
hand, robust hash functions produce balanced distribution,
but they are computationally expensive. As a starting point,
we focused on MurmurHash algorithms which, along with
Google’s CityHash and FarmHash families, are state of the
art hash functions used in the modern computer world.

The MurmurHash3 FPGA module that we created, takes
as an input an array of 64-bit keys and outputs an array with
their 32-bit hashes. The hashing algorithm is basically a
series of bitshifts, XORs and multiplications and thus is very
suitable for hardware implementation. Our hardware design
is fully pipelined, while also 8 parallel hash function units
are used to exploit the maximum SIMD kernel vectorization.
Finally, the kernel is manually replicated, with 2 instances of
the kernel being available for concurrent execution.

C. Arithmetic and Comparison Operators

Comparison operators have a key importance in an SQL
query as they limit (filter) the amount of data for further
processing, according to the specified condition. Arithmetic
operators, are also very useful and common, as they perform
mathematical calculations between two expressions in the
query. Both types of operators are mostly used in the
WHERE clause of the SQL statement, while such operations
are normally performed on a large amount of data (whole or
partial columns).

In order to meet the requirements for fast and flexible
processing, we developed different FPGA modules, one for
every operation. At a filtering module, for example, an input
column can either be compared with another input column
(from the same or another table), or it can be compared with
a constant. Equivalent functionality is provided by the
arithmetic modules.

D. MIN(), MAX() and SUM() Functions

Aggregation operations, like MIN, MAX and SUM, are used
to reduce an input set to a single value. Similar to the
previous units, our FPGA aggregation units are designed to
take columns as inputs, however their inherit loop-carried
dependency does not allow the kernel to be pipelined at
thread level. For the integer aggregations, this dependency
does not affect the loop pipeline (inside the kernel) and
successive iterations are launched every cycle. On the other
hand, this data dependency, combined with the latency of the
FPGA floating point compare and addition operators, leads
to an increased loop Initiation Interval (II) and thus to poor
performance. To enable the compiler to handle such kernels
that carry out double precision floating-point operations
efficiently, we used a technique that removes the loop-
carried dependencies by inferring a shift register.

V. DATA ANALYTIC MODULES

A. Information on Kernel Types

ND-Range kernels are built to accept multiple work-
items simultaneously. Kernel throughput is usually reduced
by the largest total number of iterations of nested loops. A
large number of threads is usually required to efficiently
utilize ND-Range kernels.

For task kernels, the compiler will attempt to pipeline
every loop in the kernel to allow multiple iterations of the
loop to execute concurrently. If some loops are not
pipelined, or not pipelined well, you may not get good
performance.

B. Manual and Automatic ND-Range Kernel Replication

ND-Range kernels that are not automatically replicated,
using “num_compute_units” attribute, and that do not use
any work-group information, are by default optimized by
the Intel compiler, for higher flexibility and performance. In
such cases, the compiler performs hardware optimizations
that allow the automatic modification of the local work size
to match the global work size on launch. In other words, the
compiler creates a kernel capable of processing an arbitrary
number of 'single work-item work-groups', in a pipelined
manner.

Figure 2. Automatically replicated ND-Range Kernel. Cores
represent the multiple compute units.

On the other hand, kernels with multiple compute units, are
compiled to behave like an heterogeneous thread pool for
work-groups that are created by a kernel call on the host.
Each core will pull a work-group off the work-group queue
(like a thread pool queue). It will execute the work-group to
completion and will then pull another work-group from the

queue. This will continue until all the work-groups for an
ND-Range kernel submission are complete.

A disadvantage of this scheme is that the work-group size
has to be big enough to better utilize the hardware pipeline
and avoid wasted cycles, caused by the pipeline latency,
each time a work-group starts/ends its execution, but, at the
same time, small enough to avoid unnecessary memory
paddings and better utilize the multiple compute units, since
Intel notes that “You should have at least three times as
many work-groups as the number of compute units to
efficiently utilize all compute units.” [6]. In other words, it
seems that the manual kernel replication is a more
straightforward solution, as it comes with less restrictions
and makes optimal use of the hardware pipelined resources,
however, as we will see in a different section, requires more
complex handling and manipulation at the host software
side.

C. Comments on Vectorization

Manual vectorization of all the kernels was performed,
in order to allow optimal usage of the memory bandwidth
through memory coalescing, but also to perform more
computations simultaneously, in a SIMD-like manner
(Single Instruction Multiple Data). It is important to note
that, the algorithmic complexity of some kernels, like
BitonicSort, does not allow automatic vectorization, using
“num_simd_work_items” attribute. In any case manual
maximum vectorization of the kernels (int16, float16, etc.)
should be considered, although it may increase the kernel
programming effort and complexity.

VI. PERFORMANCE EVALUATION

The following picture shows the performance evaluation of
the data analytic modules used in the Arria10 integrated
FPGA platform from Intel [1]. The figure shows the total
execution time in 2 processors (SW only solution) and the
total execution time in the HW-accelerated platform using
the Arria 10 FPGA and Intel processor integrated into the
same chip using the UPI interface. The table shows also the
size of the input and the output dataset that it was used for
each application. As it is shown in the figure the total
speedup ranges from 1.2x to 3.5x depending on the
application and the dataset size. The speedup that is
measured is the total end-to-end speedup including the
communication with the software module that is used to
feed the kernels with the data.

0

0.5

1

1.5

2

2.5

3

3.5

4

Sorting Hashing Arithmetic Comparison MIN-MAX

Speedup Performance

Figure 3. Average speedup depending on the category for the
acceleration of the data analytics suite implemented on the HARP.

VII. CONCLUSIONS

Data analytics are widely used in several applications
such as scientific application, financial applications and
marketing. However, as the size of the data that need to be
processed keeps increasing significantly, contemporary
general-purpose processors cannot process these data in real-
time. Hardware accelerators based on FPGAs can be used to
speedup significantly data analytics applications and reduce
the total execution time. In this paper we have shown a
modular approach in which we have developed the basic
components that are used in data analytic applications and
can be used to construct integrated frameworks for the
complete acceleration of data analytics. The speedup for the
data analytics varies from 1x to 3.5x for an integrated
platform that host both the processor and the FPGA in the
same device. The most important conclusion is that for data
analytic applications a tight communication mechanism is
required between the processor and the accelerators in order
to overcome the overhead of the data transfer for these
applications. Intel HARP platform and IBM Power8 server
with CAPI-FPGA interface such as the ones we have
evaluated offer significant speedup. Accelerators platforms
that are not tightly coupled to the processors cannot offer
significant advantage over other platforms due to the
communication overhead.

ACKNOWLEDGMENT

This project has received funding from the European Union’s
VINEYARD Horizon 2020 research and innovation
programme under grant agreement No 687628.

REFERENCES

[1] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini,

and W. A. Najjar.2015. High-Level Language Tools for
Reconfigurable Computing. Proc. IEEE 103,3 (March 2015), 390–
408. https://doi.org/10.1109/JPROC.2015.2399275

[2] David Bacon, Rodric Rabbah, and Sunil Shukla. 2013. FPGA
Programming for the Masses. Queue 11, 2, Article 40 (Feb. 2013), 13
pages. https://doi.org/10.1145/2436696.2443836

[3] O. Segal, M. Margala, S. R. Chalamalasetti, and M. Wright. 2014.
High level programming framework for FPGAs in the data center. In
Field Programmable Logic and Applications (FPL), 2014 24th
International Conference on. 1–4.
https://doi.org/10.1109/FPL.2014.6927442

[4] Xeon+FPGA Platform for the Data Center, Intel, Inc.

[5] "The VINEYARD approach: Versatile, Integrated, Accelerator-based,
Heterogeneous Data Centres" C. Kachris, D. Soudris, G. Gaydadjiev,
H. Nguyen, D. S. Nikolopoulos, A. Bilas, C. Strydis, C. Tsalidis, R.
Jimenez-Peris, and A. Almeida. International Symposium on Applied
Reconfigurable Computing (ARC 2016), March 22-24, 2016, Rio de
Janeiro, Brazil

[6] IvyTown Xeon + FPGA: The HARP Program, Intel HARP Inc, 2016
VineTalk: Simplifying Software Access and Sharing of FPGAs in
Datacenters

[7] S. Mavridis, M. Pavlidakis, C. Symeonidou, C. Kozanitis, N.
Chrysos, A. Bilas, I. Stamoulias, C. Kachris, D. Soudris, VineTalk:
Simplifying Software Access and Sharing of FPGAs in Datacenters,
IEEE nternational Conference on Field-Programmable Logic and
Applications, September, 2017. Ghent Belgium

[8] Intel. [n. d.]. Intel Open Programmable Acceleration Engine (OPAE),.
https://01.org/OPAE

