First Impressions from Detailed Brain Model
Simulations on a Xeon/Xeon-Phi Node

George Chatzikonstantis
MicroLab-ECE-NTUA, Greece

Christos Strydis
EMC, Netherlands
c.strydis@erasmusmc.nl

ABSTRACT

The development of physiologically plausible neuron models
comes with increased complexity, which poses a challenge
for many-core computing. In this work, we have chosen an
extension of the demanding Hodgkin-Huxley model for the
neurons of the Inferior Olivary Nucleus, an area of vital im-
portance for motor skills. The computing fabric of choice
is an Intel Xeon-Xeon Phi system, widely-used in modern
computing infrastructure. The target application is paral-
lelized with combinations of MPI and OpenMP. The best
configurations are scaled up to human InfOli numbers.

CCS Concepts

eApplied computing — Biological networks;

Keywords
MPI, Neuron Modeling, OpenMP, Performance

1. INTRODUCTION

Neuroscientists introduce workloads of constantly grow-
ing complexity in their efforts to reveal details of neuron
operation. To this end, software, such as NEURON [13]
and NEST [21], has been developed for brain simulation
and ported on GPUs and many-core platforms [20, 18]. We
present an inferior-olivary (InfOli) simulator based on ex-
tended Hodgkin and Huxley (HH) models [14] and its port-
ing on the Intel Xeon-Xeon Phi host-and-coprocessor system
[11]. The Xeon Phi coprocessor features up to 61 cores, each
with four instruction streams and 512-bit-sized vectorization
processing units (VPU), for simultaneous floating-point op-
erations [16]. The system supports traditional parallel cod-
ing, such as MPI [23], OpenMP [7] and combinations thereof.

*D. Rodopoulos is also with ESAT-KU Leuven, Belgium

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CF’16 May 16-19, 2016, Como, Italy
(© 2016 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4128-8/16/05.
DOL http://dx.doi.org/10.1145/2903150.2903477

. . . *

Dimitrios Rodopoulos
. MicroLab-ECE-NTUA, Greece
georgec@microlab.ntua.gr drodo@microlab.ntua.gr

Chris I. De Zeeuw
EMC, Netherlands L .
c.dezeeuw@erasmusmec.nl dsoudris@microlab.ntua.gr

Sofia Nomikou
MicroLab-ECE-NTUA, Greece
nomikou@microlab.ntua.gr

Dimitrios Soudris
MicroLab-ECE-NTUA, Greece

Duration of Simulated Brain Activif

Constant Constant
tO <€ Time Step (5) > t1 < Time Step (5) > t2
7

Input
Currents
Input
Currents

Figure 1: Flowchart of the InfOli simulator

The contributions of the current paper are: (i) Three dif-
ferent implementations are presented for the InfOli simu-
lator (MPI, OpenMP, and hybrid); (ii) Their performance
is evaluated natively on Xeon and Xeon Phi platforms and
optimal combinations of implementation and platform are
identified; and (iii) The best implementation is scaled up to
support populations of an entire adult human InfOli [19].

The paper is organized as follows: Section 2 offers in-
sight into neuron modeling and related work on many-core
platforms. Section 3 details the parallelization of the InfOli
simulator on the Xeon-Xeon Phi system. Section 4 elab-
orates on the performance measurements of the discussed
implementations. Section 5 concludes this work.

2. PRIOR ART AND MOTIVATION

Spiking Neural Networks (SNNs) [5] are categorized as
Integrate-and-Fire (I&F) or conductance-based models. I&F
are simple models, determining the neuron’s response based
on a voltage threshold, with variations such as the exponen-
tial I&F [4] and the Izhikevich [15] models. HH are promi-
nent conductance-based models, using complex differential
equations to expose the neuron’s electrochemical properties.

The target model, a tri-compartmental HH extension orig-
inally designed by Gruijl et al. [9], is used to describe neu-
rons of the inferior-olivary region [10]. The model, described
in Figure 1, consists of the soma, the axon and the den-
drite; the soma serves as the neuron’s main computational
body, the axon connects to other parts of the brain and
the dendrite handles inter-neuron connections. The detailed
synapses (gap junctions - GJs) in the dendrite present a par-
allelization bottleneck due to the volume of data exchanged.

Input
Currents

Input
Currents
depy
AuAosuuo)

Input
Currents
deiy
Kyaposuuo)

Initialize

MPI_Isend
MPI_Irecv

. 02ued IdIN

TNURY IdiN

Fetching Fetching
L)

Euler
ODE

Euler ODE Solver

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Initialize
777777777777777777777777777777777777 % |
- =
0.0
850

=i
o2 I
2T
P
D
S
| =
! |
[Upack | [Upack] [...] [Upack] Ei
Flush 7 Flush 7 !
Fetch Fetch !

L N
Euler Euler

Figure 2: Flowchart of the implementations discussed in the current paper

To accelerate neuron-model simulations, Fidjeland et al.
[12] have deployed 40, 000 densely-connected Izhikevich neu-
rons on GPUs. Bhuiyan et al. [3] accelerated up to millions
of sparsely-connected Izhikevich- and HH-neurons on vari-
ous platforms. Choi et al. [6] have developed 1,000 in silico
spiking Izhikevich neurons on a Xilinx FPGA. Partners of
the Human Brain Project have used GPUs and FPGAs for
HH-modeling of the human cerebellum [8], scaling up to
400,000 neurons. SNN-simulation toolboxes for FPGAs [24]
and GPUs [2] also exist.

We explore the Many Integrated Core (MIC) architecture
via a Xeon Phi accelerator card. It features > 57 multi-
threading cores, along with VPUs that allow Single Instruc-
tion Multiple Data (SIMD) execution of FP-operations. The
host boots a minimal Linux image on the card, so it can
be used as a standalone processor. There exist specialized
tools that aid with SIMD execution [17]. Contrary to related
work, where a custom implementation of this simulator was
ported on a research-grade chip [22], here we evaluate imple-
mentations that are generic enough to be platform-agnostic,
thus excluding manual vectorization from this work and re-
lying solely on compiler optimizations.

3. IMPLEMENTATION DETAILS

Our InfOli-networks are data-partitionable; each core is
assigned the computation of a different part of the network,
while core syncing is imposed by GJs, the biological neuron
communication mechanism. In Figure 2a, the implemen-
tation uses MPI [23], a library that allows data-exchanging
between cores over shared memory in our single-node system
and over TCP and Infiniband in multi-node systems. In each
core, a single unit of execution spawns, called MPI rank,
which handles a subset of the neuronal network. To sim-
ulate GJs, one option is neuron-to-neuron communication.
Assuming a neuron population N, the number of MPI_Isend
and MPI_Irecv pairs required under worst-case conditions
(fully-connected network) is (N — 1)2. An alternative tech-
nique exchanges data in bundles containing all GJ-required
data expected by another core. Bundling the data is called
packing, while unpacking is the reverse procedure of extract-
ing the data from received bundles. Assuming k& MPI ranks,

the worst- case number of MPI_Isend and MPI_Irecv pairs
is (k — 1), whereas each MPT call exchanges at most N/k
more data than the neuron-to-neuron case. Bundle process-
ing imposes timing overheads in each simulation step but
outperforms neuron-to-neuron communication.

The OpenMP [7] implementation in Figure 2b uses OpenMP
threads as primary units of execution. Via #pragma omp di-
rectives, the threads compute in parallel different parts of
the network. Since memory is shared between the threads,
each one can freely access another thread’s data. Thus,
both computation (i.e. ODE solution) and data-fetching are
carried out locally but cache-coherence introduces MESI-
protocol-related overheads. Overheads become more pro-
nounced when simulating a small network and creating dis-
proportionately too many OpenMP threads.

In the hybrid implementation of Figure 2c , the cores of
a platform are organized into groups, which are perceived
as MPI ranks and serve as the primary units of execution.
Within each group, all cores communicate over shared mem-
ory, spawning OpenMP threads for task acceleration. In
each group, one “master” core performs single-threaded MPI
calls for inter-group data-exchange, whereas packing and un-
packing of the data is performed by the OpenMP threads
spawned by the entire group. The implementation is log-
ically extensible to multi-node platforms, as long as each
node is organized into different groups.

4. PERFORMANCE MEASUREMENTS

We used the Blue Wonder cluster, at the Hartree Cen-
ter of the Science & Technology Facilities Council (STFC),
which features nodes of one Intel Xeon E5-2697v2 processor
(dual-socket arrangement) and one Intel Xeon Phi 5110P
accelerator. We ran experiments for 5 s of simulated neural
activity with a constant simulation step d= 50 us natively
on the platforms. The network’s connectivity map is cre-
ated by a probability-based generator, similar to the one
described in [22]. Compiling has been carried out with the
Intel C compiler and performance metrics were collected via
the Intel VTune performance analyzer.

In Figure 3, the Xeon Phi underperforms since a strictly
MPI-based implementation does not utilize the platform’s

-
o
G

1000 Cells @ Xeon
L =€) 2000 Cells @ Xeon
5000 Cells @ Xeon

*10000 Cells @ Xeon

S —>€=1000 Cells @ Phi

+ ¢+ 2000 Cells @ Phi
g "nagy: =>& 5000 Cells @ Phi

. -~ HK~.| =>€- 10000 Cells @ Phi

Execution Time per Simulation Step (us)
am
0o

102 1
10° 10" 102
Number of Ranks (p.u.)

Figure 3: MPI performance on Xeon and Xeon Phi

1000 Cells @ Xeon |
€:) 2000 Cells @ Xeon
5000 Cells @ Xeon
+10000 Cells @ Xeon

=>¢=1000 Cells @ Phi
€+ 2000 Cells @ Phi
=>& 5000 Cells @ Phi
=€ 10000 Cells @ Phi]

-

o
)
T

-
o
S
T
X
{

o
X

Execution Time per Simulation Step (us)
o
X
X
I
i
X

102 1 1
10° 10" 102 10°
Number of OMP Threads (p.u.)

Figure 4: OpenMP performance on Xeon and Xeon Phi

multithreading capabilities; intra-core rank communication
forces the MPI implementation to use a single rank per core
employed. We observe sub-optimal efficiency when simulat-
ing 2,000 or less neurons on the Phi. This behavior suggests
that small workloads do not fully exploit the computational
resources. This is not observed for larger networks, indi-
cating that the MIC architecture’s high memory-bandwidth
can satisfy the scaling data-exchanging demands, even when
employing 50 MPI ranks.

In Figure 4, OpenMP outperforms MPI on the Xeon Phi
by exploiting the accelerator’s multithreading resources more
aggressively. Whereas the Xeon Phi shows near-linear per-

formance gains when increasing the number of invoked OpenMP

threads, solving for small populations does not exhibit con-
sistent scaling for the Xeon host. We hypothesize that the
benefit of employing large numbers of OpenMP threads lies
in reducing each thread’s computational burden (each thread
solves for less neurons), whereas the cost of an OpenMP im-
plementation is related to the overhead of shared-memory

operations. On the host, the cost dominates when the neurons-

per-thread ratio is low, while the benefit outweighs the cost
for larger problem sizes. The claim is supported by Figure
5; Intel defines CPU time as “the amount of time a thread
spends executing on a logical processor” [1]. We calculate
the mean CPU time per Xeon thread and compare it to
the real elapsed time of the workload, thus arriving at the
percentage of time spent executing on the processor by the

o
8100 — ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
=
£
8 981
(]
<Y
S
S 96
<C
=
o
2 94t
3
I
w92+
=
[}
o
2 90
[} F <t
E -©-1000 Cells @ Xeon Sl
3 ~©- 2000 Cells @ Xeon Sl
2 881 - 5000 Cells @ Xeon o]
= -©+10000 Cells @ Xeon L)
[s]
3 el ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 12 14 16 18 20

Number of OMP Threads (p.u.)

Figure 5: OpenMP thread activity on the Xeon host

T
5| | =€3=1000 Cells @ Xeon 4
9 10711 &)+ 2000 Cells @ Xeon X\
= (> 5000 Cells @ Xeon \
F (> 10000 Cells @ Xeon Yy
» —>€=1000 Cells @ Phi x ‘X
c D€+ 2000 Cells @ Phi . NS
2 =>& 5000 Cells @ Phi . X \X
£ 0% [=€ 10000 Cells @ Phi NG X
E A
(7] =TT KRS
et .
5 .
& 1 Ole. U
O NSNS A LYY N AN
E
= o3l 1
< 10
8
5
o
[
>
1
1 02 1 1 1 1 1 1 1 1 1 1 1

1:20 2:10 5: 10:2 20:1 1:2002:100 5:40 10:2020:10 50:4
Ranks to OMP Threads Ratio (p.u.)

Figure 6: Hybrid performance on Xeon and Xeon Phi

average thread. There is a drastic decrease in thread ac-
tivity when solving for 1,000 neurons on 20 Xeon threads,
which is a low neurons-per-thread scenario.

In Figure 6, different ratios of MPI ranks to OpenMP
threads spawned per rank are used to utilize each target
platform at a constant, maximum capacity. We observe
that both platforms perform better with balanced MPI-to-
OpenMP ratios (5:4 and 20:10 for the Xeon host and the
Xeon Phi, respectively). “Middle-of-the-road” approaches
appear able to balance the burden of message exchange be-
tween a reasonable number of core-groups, while keeping the
workload of each group big enough to near-maximally utilize
computational resources via OpenMP threads.

In Figure 7, the best configurations scale to larger pop-
ulations, while keeping an upper bound on execution times
set at six hours. The Xeon Phi accelerator cannot compete
with the Xeon host for native execution, hinting at a need to
perform manual source code vectorization to use more of the
accelerator’s assets [17], at the cost of increased development
time. OpenMP behaves better for the Phi, however a steep
performance curve causes message-passing-based implemen-
tations to be favoured for networks of > 20,000 neurons,
especially since they are the only option for multi-node sys-
tems. The hybrid implementation narrowly outperforms the
pure MPI method by using more of the platform’s resources,
albeit not efficiently due to OpenMP-imposed overheads.
On the host, OpenMP remains the optimal implementation

10°®

= Hybrid Method 5:4 @ Xeon
=€) Pure MPI 20 Ranks @ Xeon
) Pure OMP 20 Threads @ Xeon
105 H =>€=Hybrid Method 20:10 @ Phi
)¢+ Pure MPI 50 Ranks @ Phi
—>€ Pure OMP 200 Threads @ Phi

10* v g 5

107

Execution Time per Simulation Step (us)

10° 10* 10° 10°
Number of Simulated Cells (p.u.)

Figure 7: Comparing the best implementations

for smaller networks. For more than 50,000 neurons, pure
implementations outperform the hybrid method, since both
can fully utilize the Xeon’s resources. Finally, MPI slightly
outperforms OpenMP for 1 million neurons.

5. CONCLUSIONS

We ported a demanding biological neural-network simula-
tor on a single-node Xeon-Xeon Phi system via three native
implementations: an MPI-based one, an OpenMP-based one
and a combination of both. The MPI implementation un-
derperforms for the Xeon Phi accelerator since it does not
utilize the coprocessor’s multithreading resources, but per-
forms well on the host, particularly for more than 10° neu-
rons. The hybrid implementation improves on MPI’s short-
comings on the accelerator, a feat which is not present in the
Xeon host’s case due to MPI already utilizing the platform
efficiently. OpenMP is the optimal choice on both comput-
ing platforms for smaller networks, albeit its performance
does not scale linearly in all use-cases. The accelerator’s hy-
brid implementation and the host’s pure-MPI programming
method rival OpenMP for large networks due to them being
extensible to multi-node systems. The Xeon processor ex-
hibits better overall performance than the Xeon Phi, scaling
up to a million inferior-olivary nuclei. Their gap in perfor-
mance may be narrowed by manually vectorizing the source
code; when relying on compiler optimizations, we propose
that a dual-socket Xeon processor is the preferable choice
for single-node simulations of complex brain models.

Acknowledgements

This work is supported by European Commission project
H2020-687628-VINEYARD. The STFC Hartree Centre (UK)
is acknowledged for providing computational resources.

6. REFERENCES

[1] https://software.intel.com/en-us/node/471922.

[2] Beyeler, M. et al. CARLsim 3: A user-friendly and
highly optimized library for the creation of
neurobiologically detailed spiking neural networks. In
IJCNN, pages 1-8, 2015.

[3] Bhuiyan, M. et al. Acceleration of spiking neural

networks in emerging multi-core and GPU
architectures. In IEEE IPDPSW, pages 1-8, 2010.

[4] Brette, R. and Gerstner, W. Adaptive exponential
integrate-and-fire model as an effective description of
neuronal activity. Journal of Neurophysiology,
94(5):3637-3642, 2005.

[5] Brette, R. et al. Simulation of networks of spiking
neurons: A review of tools and strategies. J. of Comp.
Neuroscience, 23(3), 2007.

[6] Choi, J. et al. Implementation of hardware model for
spiking neural network. In ICAI page 700, 2015.

[7] L. Dagum and R. Enon. Openmp: an industry
standard api for shared-memory programming. IEFE
CSE, 5(1):46-55, 1998.

[8] D’Angelo, E. et al. The human brain project: High
performance computing for brain cells hw/sw
simulation and understanding. In DSD, 2015.

[9] J. R. De Gruijl, P. Bazzigaluppi, M. T. de Jeu, and
C. I. De Zeeuw. Climbing fiber burst size and olivary
sub-threshold oscillations in a network setting. 2012.

[10] De Zeeuw, C. I. et al. Microcircuitry and function of
the inferior olive. Trends in neurosciences,
21(9):391-400, 1998.

[11] Fang, J. et al. Test-driving intel xeon phi. In
ACM/SPEC ICPE, pages 137-148, 2014.

[12] Fidjeland, A. K. et al. . Nemo: a platform for neural
modelling of spiking neurons using GPUs. In IEEE
ASAP, pages 137144, 2009.

[13] M. L. Hines and N. T. Carnevale. The NEURON
simulation environment. Neural computation,
9(6):1179-1209, 1997.

[14] A. L. Hodgkin and A. F. Huxley. Propagation of
electrical signals along giant nerve fibres. Proceedings
of the Royal Society of London. Series B, Biological
Sciences, 140(899):177-183, 1952.

[15] Izhikevich, E. M. et al. Simple model of spiking
neurons. IEEE Transactions on neural networks,
14(6):1569-1572, 2003.

[16] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor
High-Performance Programming. Elsevier, 2013.

[17] Lubin, M. et al. Efficient Software Development: 4
What’s New in Intel® Parallel Studio XE 2013
Service Pack. 2013.

[18] M. Migliore, C. Cannia, W. W. Lytton, H. Markram,
and M. L. Hines. Parallel network simulations with
NEURON. Journal of Computational Neuroscience,
21(2):119-129, 2006.

[19] R. D. Monagle and H. Brody. The effects of age upon
the main nucleus of the inferior olive in the human.
Journal of Comparative Neurology, 155(1):61-66, 1974.

[20] Nguyen, H. A. Du et al. Accelerating complex
brain-model simulations on GPU platforms. In DATE,
pages 974-979, 2015.

[21] Plesser, H. E. et al. Nest: the neural simulation tool.
Enc. of Comp. Neuroscience, pages 1849-1852, 2015.

[22] Rodopoulos, D. et al. Optimal mapping of inferior
olive neuron simulations on the single-chip cloud
computer. In IEEE SAMOS, 2014.

[23] M. Snir. MPI-the Complete Reference: The MPI core.
MIT, 1998.

[24] Wu, Q. et al. Development of FPGA toolbox for
implementation of spiking neural networks. In CSNT,
pages 806-810, 2015.

