

DOCUMENT ID D4.1. CONTRACT START DATE 1st FEBRUARY 2016

CONTRACT DURATION 36 Months

DUE DATE 01/08/2016

DELIVERY DATE 01/08/2016

CLASIFICATION Confidential

AUTHOR/S Hans Vandierendonck

DOCUMENT VERSION 0.6

D4.1 Programming
Language and Runtime
System: Requirements

2

D4.1 Programming Language and Runtime System: Requirements

1 EXECUTIVE SUMMARY

The VINEYARD projects aims to achieve easy-to-use and transparent acceleration of data

analytics. One of the components in the VINEYARD is the programming model and runtime
system support, which is developed in Work Package 4. This document elaborates the

requirements for the VINEYARD programming model and runtime system. We have summarized
12 requirements on the programming language, runtime system and acceleration library that

are necessary to realize the goals and ambition of the VINEYARD project as it is shown in this

table.

Component Requirement

Programming
model

Support acceleration of big data analytics frameworks (e.g., Spark,
Storm and Heron) with accelerators including at least FPGAs and if

possible also GPUs and Xeon Phi accelerators.

Support concise description of equivalent implementations of the same
algorithm and a uniform interface for invoking these implementations.

If necessary, support annotation of equivalent implementations with

additional information in order to enable the VINEYARD runtime system
to autonomously select one version over another, or to efficiently load-

balance work across accelerators.

Balance programmer control versus transparency through the design of
the programming model.

Runtime System
Develop techniques to efficiently share data between managed

language runtimes and low-level (bare-metal) programming
environments typically used on accelerators.

Develop scheduling techniques for variable-rate data streams to

optimize throughput, resource utilization and/or energy efficiency

building on the concept of fair-share allocation.

Develop scheduling techniques for hybrid scheduling across CPUs and

accelerators.

Design a memory management subsystem to manage data distribution

across CPU nodes and accelerators.

Optimize workload schedulers by taking into account existing data

allocation and minimizing data movement.

Design scheduling strategies and runtime system support for virtualized

accelerators.

Acceleration

library

Define library of reusable accelerator IP blocks

Optimize configuration of the IP blocks given available hardware

resources

3

D4.1 Programming Language and Runtime System: Requirements

CONTRIBUTORS

Hans Vandierendonck Queen’s University Belfast

Christoforos Kachris ICCS

George Chatzikonstantis ICCS

Dimitrios S. Nikolopoulos Queen’s University Belfast

Tobias Becker MAX

PEER REVIEWERS

Name Organization

Mike Ashworth STFC

Chrisotofors Kachris ICCS

4

D4.1 Programming Language and Runtime System: Requirements

REVISION HISTORY

Version Date Author/Organisation Modifications

0.1 22.06.2016 Hans Vandierendonck, QUB Initial Version

0.2 3.7.2016
Christoforos Kachris, ICCS

George Chatzikonstantis

FPGA programming

model,

Acceleration requirements

Xeon Phi programming

model

0.3 19.07.2016
Hans Vandierendonck and

Dimitrios S. Nikolopoulos, QUB

Programming model and

runtime system

requirements

0.4 25.07.2016 Tobias Becker
Maxeler programming

model

0.5 25.07.2016 Christoforos Kachris, ICCS
State-of-the-art of FPGA

usage in data analytics

0.6 30.07.2016 Hans Vandierendonck, QUB Internal review

5

D4.1 Programming Language and Runtime System: Requirements

Table of Contents

1 EXECUTIVE SUMMARY .. 2

2 Introduction ... 8

2.1 Goal of Deliverable ... 8

2.2 Audience ... 8

2.3 Document Structure ... 8

3 Background on Accelerator Programming Models .. 9

3.1 Programming Models for FPGAs... 9

 Hardware Description Languages .. 9

 High level Synthesis (HLS) ... 10

3.2 The Maxeler DFE Programming Model ... 14

 Dataflow Engine Architecture ... 14

 DFE Platform Programming ... 17

3.3 Programming Models for GPUs ... 22

 C Language Interfaces .. 22

 Java-C Bindings .. 24

 Java-Language Integration .. 24

 Performance Considerations .. 27

3.4 Programming Models for the Xeon Phi .. 28

 MIC Hardware Architecture ... 28

 Modes of Operation .. 30

6

D4.1 Programming Language and Runtime System: Requirements

 Programming Frameworks ... 31

 Performance Monitoring .. 32

4 Background on Data Analytics Platforms .. 32

4.1 Batch Processing ... 32

 Acceleration of Batch Processing .. 33

4.2 Stream Processing .. 36

 Acceleration of Stream Processing .. 37

5 Requirements .. 37

5.1 Programming Model .. 38

 Programming Model Support for Accelerators 38

 Runtime System and Scheduling .. 39

 Data Distribution .. 40

 Virtualization .. 41

5.2 Acceleration Libraries .. 41

5.3 Summary ... 43

6 Conclusion .. 44

Table of Figures

Figure 1. Current FPGAs can integrate several specialized components such as

Application Processors, Real-time Processors, Graphics Processors, High speed

transceivers, power management, DSP and memory blocks, Source: Xilinx, 2016 9

Figure 2. The Xilinx’s SDAccel framework for the programming of FPGA based on

OpenCL. .. 13

7

D4.1 Programming Language and Runtime System: Requirements

Figure 3: A conventional control-flow oriented processor (a) compared to a data-flow

engine (b). .. 15

Figure 4: Structure of a Maxeler MAX4 data-flow engine. ... 15

Figure 5: A Maxeler MPC-X system with eight DFEs in a single node. Infiniband network

is used to connect MPC-X with the CPUs. All DFEs can be allocated dynamically. 16

Figure 6: Parallel execution in data-flow system. ... 18

Figure 7: A simple data-flow graph (left). All arithmetic operations are carried out in

parallel. A practical data-flow application (right) with 5000 arithmetic operators running

concurrently in a data-flow pipeline. .. 20

Figure 8: Example of a DFE kernel performing a moving average computation. 21

Figure 9. Architecture of an Intel® Xeon Phi™ core. ... 29

Figure 10. Different execution models on a typical node with Xeon CPU and Xeon Phi

accelerator. ... 30

Figure 11. High-level overview of the VINEYARD framework and the Acceleration

library ... 42

List of Tables

Table 1 Summary of requirements of the VINEYARD programming model and runtime

system .. 43

8

D4.1 Programming Language and Runtime System: Requirements

2 Introduction

The aim of VINEYARD is to make accelerators easy and transparent to use such that

infrastructure efficiency is improved and application-level Quality of Service (QoS) is

enhanced. In order to help achieve this goal, Work Package 4 of the VINEYARD project

aims to define a programming model and its accompanying runtime system that

achieves the outlined goals. This programming model and runtime system will build on

existing, leading big data analytics platforms and extend their capabilities with

seamless and transparent acceleration.

This deliverable is a summary of our initial study of the requirements of such

extensions to data analytics platforms. It identifies key challenges that need to be

addressed by WP4.

2.1 Goal of Deliverable

The aim of Task 4.1 is to define, design and implement the VINEYARD programming

model and integrate programmable accelerators into the programming model using a

library interface. The starting point of this task will be the Spark and Storm

programming models for processing stationary and streaming data, respectively.

Deliverable D4.1 is the first checkpoint of this development.

2.2 Audience

VINEYARD partners involved with developing and evaluating the VINEYARD

programming framework (WP4) and the runtimes (WP5). Also the application partners

involved with applying the VINEYARD programming framework to the use cases on

neuro-computing, financial applications and data management applications.

2.3 Document Structure

This document first reviews the state-of-the-art in programming models for

accelerators. It is necessary to integrate accelerator programming models for the

supported accelerators in the VINEYARD programming model. Next, the document

reviews data analytics platforms and prior work on applying acceleration to these

9

D4.1 Programming Language and Runtime System: Requirements

platforms. Finally, we deduce the requirements for the VINEYARD programming

platform, which aims to address open issues.

3 Background on Accelerator Programming Models

3.1 Programming Models for FPGAs

Field Programmable Gate Arrays (FPGAs) are integrated circuits designed to be

configured/programmed after manufacturing. FPGAs are usually based on Look-Up

Tables that can be programmed to execute logical and arithmetic operations.

Although FPGAs were initially used as glue logic for digital design circuits, currently

FPGAs are emerging as fully SoCs (system on chip) with many integrated devices such

as memories, Digital Signal Processing Units (DSP), memory blocks (BRAM), and high-

speed transceivers that can reach up to 28 Gbps.

Figure 1. Current FPGAs can integrate several specialized components such as Application Processors,
Real-time Processors, Graphics Processors, High speed transceivers, power management, DSP and

memory blocks, Source: Xilinx, 2016

 Hardware Description Languages

Despite the recent push toward high level synthesis (HLS), hardware description

languages (HDLs) remain the most widely used programming model in field

10

D4.1 Programming Language and Runtime System: Requirements

programmable gate array (FPGA) development. Specifically, two FPGA design

languages have been used by most developers: VHDL and Verilog. Both of these

“standard” HDLs emerged in the 1980s, initially intended only to describe and simulate

the behavior of the circuit, not implement it. Most designs have been developed using

one or the other of these languages.

HDLs allow the designer to describe in full detail the logic circuit that will be

implemented on the FPGA. The logic circuits that are described in HDL are then

mapper to the logic resources of the FPGAs (for example a digital logic function can be

mapped to a Look-Up Table in the FPGA that will operate as a digital logic function).

 High level Synthesis (HLS)

Although the most of the FPGAs are currently programmed using HDL, there are also

other ways to program the FPGAs1.

The C, C++ or System C option allows us to leverage the capabilities of the largest

devices. The ability to use C-based languages for FPGA design is brought about by HLS

(high level synthesis), which has been on the verge of a breakthrough now for many

years with tools like Handle-C and so on. Recently it has become a reality with both

major vendors, with Altera and Xilinx offering HLS within their toolsets Spectra-Q and

Vivado HLx respectively.

However, HLS has limitations when using C-based approaches, just like with traditional

HDL you have to work with a subset of the language. For instance, it is difficult to

synthesize and implement system calls, and users have to make sure everything is

bounded and of a fixed size.

Furthermore, dynamic memory allocation is not supported in HLS (malloc, free, etc.).

Therefore, any legacy code that is written using dynamic memory management has to

be modified accordingly.

1 Adam Taylor, 10 Ways To Program Your FPGA, EETimes, online article,

http://www.eetimes.com/document.asp?doc_id=1329857

http://www.eetimes.com/document.asp?doc_id=1329857

11

D4.1 Programming Language and Runtime System: Requirements

In general, C-based languages are not well suited for HLS. The major challenges are

the lack of: 1) timing information in the code, 2) size-based data types (or variable bit

length data types), 3) built-in concurrency model(s), 4) local memories separated from

the abstraction of one large shared memory. While all these points are valid, the main

attraction of C-based languages is familiarity. Most HLS tools using C-based languages

provide workarounds for one or more of these obstacles2.

One of the main benefits of HLS, however, is the ability to develop the algorithms in

floating point and let the HLS tool address the floating- to fixed-point conversion.

A number of other C-based implementations are available, such as OpenCL which is

designed for software engineers who want to achieve performance boosts by using a

FPGA without a deep understanding of FPGA design. Open Computing Language

(OpenCL) is a programming language originally proposed by Apple Inc. and maintained

by the Khronos Group3. The OpenCL specification provides a framework for

programming parallel applications on a wide variety of platforms including CPUs, GPUs,

DSPs, and FPGAs4. Moreover, OpenCL is a royalty-free, cross-platform, cross-vendor

standard that targets supercomputers, embedded systems, and mobile devices.

OpenCL allows programmers to use a single programming language to target a

combination of different parallel computing platforms. Parallel computation is achieved

through both task-level and data-level parallelism. The OpenCL framework provides an

extension of C (based on C99) with parallel computing capabilities and the OpenCL

API, which is an open standard for different devices. In the OpenCL programming

model, a host is connected to one or more accelerator devices running OpenCL

kernels. Device vendors provide OpenCL compilers and runtime libraries necessary to

run the kernels. The host program is written in standard C in order to query, select,

and initialize compute devices. Communication between the host program and

accelerators is established through a set of abstract OpenCL library routines. Each

2 S. A. Edwards, ‘‘The challenges of synthesizing hardware from C-like languages,’’ IEEE Design

Test Comput., vol. 23, no. 5, pp. 375–386, 2006.
3 Khronos. [Online]. Available: https://www.khronos.org/opencl
4 N. Trevett, ‘‘OpenCL introduction,’’ in SIGGRAPH Asia, 2013,
https://www.khronos.org/assets/uploads/developers/library/2013-siggraph-

asia/OpenCL%20Intro%20SIGGRAPH%20Asia%20Nov13.pdf

https://www.khronos.org/opencl

12

D4.1 Programming Language and Runtime System: Requirements

accelerator device is a collection of compute units with one or more processing

elements. Each processing element executes code as SIMD or SPMD.

In the FPGA industry, both Altera and Xilinx have announced support for OpenCL HLS

in their FPGA development tools. Altera released an OpenCL SDK in 2013 that supports

a subset of the OpenCL 1.0 specifications. Xilinx introduced support for OpenCL in their

Vivado HLS tool in April 2014.

Commercial frameworks

Xilinx Vivado HLS

Vivado High-Level Synthesis is a complete HLS environment from Xilinx. It has been in

development for the last several years following Xilinx’s acquisition of AutoESL. Vivado

HLS is available as a component of Xilinx’s larger Vivado Design Suite or as a

standalone tool. Like most HLS tools, Vivado HLS is mostly oriented towards core

generation over full system design. It is possible to create hybrid designs with portions

of code running on a soft-core processor communicating with custom hardware

accelerators. Depending on requirements, the hardware accelerator can be exported as

one of several different Xilinx specific core formats for simple integration into other

products, or just the HDL specification.

The Vivado HLS tool is built using LLVM compiler framework5. As such it has access to

many software optimizations (e.g., loop-unrolling, loop-rotation, deadcode elimination,

etc.). However, hardware and software programing paradigms are inherently different

so we cannot expect all of LLVM’s optimizations to work seamlessly for HLS. Several

studies using Vivado HLS to generate FPGA accelerators have been demonstrated,

including Dynamic Data Structures6, and real-time embedded system vision7.

Xilinx also offers an integrated framework for the deployment of FPGAs in data centers.

SDAccel’s architecturally optimizing compiler allows software developers to compile and

5 LLVM. [Online]. Available: http://llvm.org/
6 F. Winterstein, S. Bayliss, and G. A. Constantinides, ‘‘High-level synthesis of dynamic data

structures: A case study using Vivado HLS,’’ in Int. Conf. FPT, Dec. 2013, pp. 362–365.
7 J. Hiraiwa and H. Amano, ‘‘An FPGA implementation of reconfigurable real-time vision

architecture,’’ in Adv. Inf. Netw. Appl. Workshops, Mar. 2013, pp. 150–155.

http://llvm.org/

13

D4.1 Programming Language and Runtime System: Requirements

optimize streaming, low-latency, and custom datapath applications. The SDAccel

compiler targets high-performance Xilinx FPGAs and supports source code using any

combination of OpenCL, C, C++, and kernels. According to Xilinx, the SDAccel compiler

delivers as much as a 10X performance improvement over high-end CPUs with one

tenth the power consumption of a GPU, while maintaining code compatibility and a

traditional software programming model for easy application migration and cost

savings.

Figure 2. The Xilinx’s SDAccel framework for the programming of FPGA based on OpenCL.

Altera

The Altera OpenCL SDK provides software programmers an environment based on a

multi-core programming model that abstracts away the underlying hardware details

while maintaining efficient use of FPGA resources. The Altera Offline Compiler (AOC) is

an offline compiler that translates OpenCL to Verilog and runtime libraries for the host

application API and hardware abstractions. Unlike the OpenCL compiler for CPUs and

GPUs, where parallel threads are executed on different cores, AOC transforms kernel

functions into deeply pipelined hardware circuits to achieve parallelism. AOC uses a

CLANG front-end to parse OpenCL extensions and intrinsics to produce unoptimized

LLVM IR (intermediate code). The middle-end performs optimization with about 150

compiler passes such as loop fusion, auto vectorization, and branch elimination. On the

back-end, the compiler instantiates Verilog IP and manages control flow circuitry of

14

D4.1 Programming Language and Runtime System: Requirements

loops, memory stalls, and branching. Finally, the generated kernel is loaded onto an

Altera FPGA using an OpenCL compatible hardware image.

3.2 The Maxeler DFE Programming Model

 Dataflow Engine Architecture

Maxeler commercialises a dataflow-oriented computing approach that fundamentally

differs from conventional CPUs which are instruction and control-flow oriented. A CPU

works by reading and decoding instructions, loading data, carrying out an operation on

the data, and writing the result back to memory. This process is fundamentally

sequential and requires complex control units to manage the operation of the

processor. In comparison, the execution model of a Data-Flow Engine (DFE) is greatly

simplified8. Data flows from memory into the chip where arithmetic operations are

carried out by chains of functional units (data-flow cores) which are statically

interconnected in a topology corresponding to the implemented functionality. This is

illustrated in Figure 3. Data simply streams from one functional unit directly to the next

one without the need for instructions; it arrives just in time when it is needed and the

final results flow back into memory. Every single data-flow core performs only a simple

arithmetic operation such as multiplication or addition. Therefore, thousands of

arithmetic units can be put onto a chip and all of them can potentially perform useful

calculations all of the time.

The dataflow pipeline is an application-specific compute structure which requires a

reconfigurable chip substrate to create and customise the pipeline for a specific

application. Maxeler realises Data-flow Engines by combining a large reconfigurable

device with large amounts of DDR memory organised in multiple parallel channels. The

structure of the current generation MAX4 DFE architecture is illustrated in Figure 4. It

uses an Altera Stratix-V FPGA to provide the reconfigurable substrate for the data-flow

computations.

8 Tobias Becker, Oskar Mencer, Stephen Weston, Georgi Gaydadjiev. “Maxeler Data-Flow in
Computational Finance” FPGA Based Accelerators for Financial Applications, pp 243-266,

Springer, 2015.

15

D4.1 Programming Language and Runtime System: Requirements

Figure 3: A conventional control-flow oriented processor (a) compared to a data-flow engine (b).

Figure 4: Structure of a Maxeler MAX4 data-flow engine.

Altera Stratix-V FPGAs contain programmable logic resources in form of general-

purpose logic look-up tables, programmable interconnect, on-chip memory and

programmable DSPs. These programmable resources are used to create the

application-specific dataflow pipeline. Altera FPGAs also contain embedded memory

blocks which are used in a DFE as so-called Fast Memory (FMEM). FMEM blocks are

spread throughout the reconfigurable substrate and can be accessed at a total data-

rate of several terabytes per second. This is useful for local low-latency buffering of

data. The FPGA is surrounded by large amounts of DRAM. This memory is called Large

16

D4.1 Programming Language and Runtime System: Requirements

Memory (LMEM). LMEM is used for bulk storage and streaming of data. A MAX4 card

uses an 8-lane PCIe interface to the CPU which provides a total bandwidth of up to

4GB/s. The card also provides several MaxRing connectors which create high-speed

links directly between multiple DFE cards. Various electrical and optical MaxRing

connector options are available. The next generation DFE to be developed in Vineyard

will use a newer generation FPGA device but the overall concept of the DFE

architecture will be maintained.

Maxeler’s high-performance dataflow computing systems consist of multiple DFEs,

CPUs, networking, and storage. Several system architectures are available and the

overall component balance can be customised at system level to the requirements of

the user. For example, Maxeler’s MPC-X series systems are pure dataflow appliances

that integrate eight MAX4 DFE cards into a dense 1U industry-standard chassis. This is

illustrated in Figure 5.

Figure 5: A Maxeler MPC-X system with eight DFEs in a single node. Infiniband network is used to connect
MPC-X with the CPUs. All DFEs can be allocated dynamically.

The MPC-X system contains only DFE cards and no CPUs. Each DFE card contains 48

GB of DRAM as LMEM and DFEs are directly connected through MaxRing in a

bidirectional 1D array topology. The MPC-X system is connected to industry standard

CPU servers via an Infiniband network. The CPU server acts as an application host and

compute intensive tasks are offloaded to DFEs. This architecture allows a flexible

number of CPU servers and MPC-X nodes to be connected via an Infiniband network,

17

D4.1 Programming Language and Runtime System: Requirements

and a various number of DFEs can be allocated dynamically to several host

applications. Such scalability and flexibility is useful for applications with changing run-

time behaviour, e.g., a computation that has several stages, which differ in their

behaviour or complexity.

 DFE Platform Programming

Programming a dataflow system requires the application to be described in a dataflow

model. This involves splitting the application into its data plane and control plane. The

data plane will be mapped onto the DFE and it will be highly efficient for carrying out

large-scale computations with a static execution model. However, DFEs are not very

efficient for computing small-scale problems with control-dominated dynamic

behaviour. This part will be handled by a conventional CPU which acts as a host that

sets up and controls the computation on the DFE and also and carries out the control-

intensive tasks. The dataflow part of the application will be described in MaxJ, a Java-

based meta-language while the control part is developed in C, C++ or other

conventional programming approaches. Maxeler provides a programming environment

and run-time system which comprises of several components:

 MaxCompiler, a programming environment to develop data-flow applications.

The compute-intensive DFE parts are described in the MaxJ programming

language. The compute kernels handling the data-intensive part of the

application and the associated manager, which orchestrates data movement

within the DFE, are written using this language. The CPU part of the application

can be written in C, C++, etc;

 The SLiC (Simple Live CPU) interface, which is Maxeler's application

programming interface for seamless CPU-DFE integration;

 MaxelerOS, a software layer and run time between the SLiC interface, the Linux

operating system and the hardware, which manages DFE hardware and CPU-

DFE interactions in a way transparent to the user;

 MaxIDE, a specialised Eclipse-based integrated development environment for

MaxJ and DFE design, a fast DFE software simulator and comprehensive debug

provisions used during development.

18

D4.1 Programming Language and Runtime System: Requirements

To illustrate DFE programming in MaxJ we first consider the parallel execution model

inside a DFE. All operations within a DFE are naturally parallel, and any operation

specified in MaxJ code is parallel unless explicitly specified as sequential. The general

model of a DFE is illustrated in Figure 6. Data streams from memory through a pipeline

of data-flow cores with final results being streamed back to memory. Each data-flow

core receives a continuous stream of data from either memory or from a previous

data-flow core and the output data stream directly feeds into another data-flow core or

back into memory. All data-flow cores operate concurrently and they are statically

interconnected at design time. Hence, there is no control flow, synchronisation or

routing necessary between data-flow cores. A CPU system is used to set up the

computation on the DFE and to perform all the control-intensive tasks.

Figure 6: Parallel execution in data-flow system.

Inside the DFE, data-flow cores carry out the accelerated arithmetic and logic

operations. Multiple data-flow cores form a compute kernel, and a so-called manager is

responsible for managing the connections between the separate kernels, the

connections to off-chip resources such as LMEM memory, and the various PCIe,

Infiniband and MaxRing interconnects. Data-paths within kernels are deeply pipelined

without any synchronisation concerns. During kernel development, a data-flow

developer simply focuses on realising large degrees of parallelism and pipelining

without having to worry about synchronisation or scheduling. MaxCompiler will perform

19

D4.1 Programming Language and Runtime System: Requirements

the scheduling of operations and balancing the data paths inside a kernel

automatically. A manager configuration (not shown in Figure 6) is used to create the

connections between the compute kernels and LMEM memory, CPU host memory and

other IO interfaces.

To program a data-flow engine, we create a completely parallel and fixed data-flow

structure that can perform computations by simply streaming data through it. To

illustrate this concept, we show how a simple loop computation can be transformed

into a data-flow kernel. Let us consider an example where we want to calculate y =

x2 + 3x + 17 over a data set. A conventional C program requires a for loop to

repeat the computation over a dataset even though there is nothing inherently

sequential in this computation:

for (i = 0; i < numDataElements; i++) {

 x = input[i];

 y = x*x + 3*x + 17;

 output[i] = y;

}

Figure 7 (left) shows a simple data-flow kernel representing the same computation.

The operations that are located inside the body of the loop can be carried out by a

fixed pipeline with two multipliers and two adders. The for loop is removed by using

streaming inputs and outputs that are either connected to LMEM memory or CPU host

memory. The arithmetic operations are also carried out concurrently rather than in

sequence. A practical data-flow implementation can contain thousands of operators in

a data-path all working concurrently (see Figure 7, right). The MaxJ kernel description

that can generate this data-path is as follows:

class SimpleCalc extends Kernel {

 SimpleCalc() {

 DFEVar x = io.input("x", dfeFloat(8,24));

 DFEVar y = x * x + 3 * x + 17;

 io.output("y", y, dfeFloat(8,24));

 }

}

The MaxJ description begins by extending the kernel class. The kernel class is part of

the Maxeler Java extensions and the user develops their own kernels by using

inheritance. Next, we define a constructor for the class. It is important to point out that

this MaxJ program will only run once to build the DFE configuration; the constructor

20

D4.1 Programming Language and Runtime System: Requirements

will facilitate building the data-flow implementation. To create the streaming inputs

and outputs for the kernel, the methods io.input and io.output are used. Streaming

inputs and outputs replace the for loop in the original C code that iterates over data.

The input method also allows to fully customise the input number format. In this case,

we use a standard single precision floating point format (8-bit exponent and a 24-bit

mantissa), but MaxJ also supports custom data types that can be defined by the user.

This is useful when optimising the numerical behaviour and performance. The

computation itself is expressed in a very similar way as in the original C code. A

variable type DFEVar is used to handle all streaming data.

Figure 7: A simple data-flow graph (left). All arithmetic operations are carried out in parallel. A practical
data-flow application (right) with 5000 arithmetic operators running concurrently in a data-flow pipeline.

Another example of a MaxJ dataflow description is show below. The code performs a

moving average computation over three data elements. The resulting dataflow kernel

that is generated by MaxCompiler is shown in Figure 8. As it can be seen, a counter

and a ternary operator implement a highly customised control structure tightly coupled

with the dataflow path. This is an example of handling control in a dataflow kernel and

in this case it handles the boundary conditions when no valid data are present. Another

21

D4.1 Programming Language and Runtime System: Requirements

important construct are stream offsets which allow access to data elements that are

ahead or behind the current element in the stream.

class MovingAv extends Kernel {

 MovingAv() {

 DFEVar x = io.input("x", dfeFloat(8,24));

 DFEVar x_prev = stream.offset(x, -1);

 DFEVarx_next = stream.offset(x, +1);

 DFEVar cnt = control.count.simpleCounter(32, N);

 DFEVarvalid = (cnt > 0) & (cnt < (N-1));

 DFEVar y = valid ? (x_prev+x+x_next) / 3.0 : 0.0;

 io.output("y", y, dfeFloat(8,24));

 }

}

Figure 8: Example of a DFE kernel performing a moving average computation.

The result of compiling a MaxJ description using MaxCompiler is a binary file containing

the FPGA configuration (referred as the .max file) that can be linked with the host

application. Maxeler provides the SLiC API to invoke the max file from the host

application code. SLiC provides various abstraction layers that let the programmer call

the DFE with one simple function call or control it in more advanced ways.

MaxCompiler automatically generates the necessary function prototypes. MaxelerOS is

a run-time layer that handles interactions between host applications making SLiC calls

and the DFEs. It coordinates the use of DFE resources at run time, and manages the

22

D4.1 Programming Language and Runtime System: Requirements

scheduling and data movement within Maxeler systems. More information on MaxJ and

SliC can be found in the compiler documentation9.

Code development can be done in MaxIDE, an Eclipse-based integrated development

environment that provides a unified view of that project that includes kernel and

manager code in MaxJ and the host application. It also provides a simulation and

debugging environment for the project.

A noteworthy characteristic of the DFE compute model is that the computation inside

the DFE is entirely deterministic and predictable, making it easy to analyse and

alleviate performance bottlenecks. This means the design can be analysed and

optimised using simple spreadsheet calculations even before it has been compiled. The

performance of a data-flow engine in terms of operations per second generally

increases with the number of operations specified in a MaxJ data-flow design. Since all

operations run in parallel, having more operations in the code automatically translates

into more computations per fixed unit of time. The performance limit is reached when

either the reconfigurable chip is completely filled up with arithmetic operators or the

available memory bandwidth is fully consumed. Ideally, both should be utilised as close

to 100% as possible.

3.3 Programming Models for GPUs

In this Section we give a brief overview of the prevalent approaches for heterogeneous

programming in high-performance computing, in particular focussing on code

acceleration with GPUs.

 C Language Interfaces

As GPU programming is concerned with low-level machine details, it should come as no

surprise that the main programming models for GPUs are based on the C language.

The Compute Unified Device Architecture (CUDA)10 is NVIDUA's proprietary

9 Multiscale Dataflow Programming, Version 2015.2, Maxeler Technologies THIS NEEDS A WEB

REFERENCE
10 Parallel Programming and Computing Platform.

http://www.nvidia.com/object/cuda_home_new.html Accessed 01 February 2016

http://www.nvidia.com/object/cuda_home_new.html

23

D4.1 Programming Language and Runtime System: Requirements

programming model for GPUs. The term 'unified' implies that the same programming

model applies across all programmable NVIDIA GPUs, even though these GPUs have

very different architectures. As such, the code will be functionally correct on all

supported GPUs, but the performance of a CUDA program can vary strongly between

GPUs.

The architecture of GPUs differs between high-end and low-end GPUs and generally

becomes more capable as device integration improves over time. As they have

different numbers of compute units, internal registers, different amounts of local and

global memory and different memory bandwidths, it may be necessary to restructure

the code when moving from one type of GPU to another if one desires to maintain

optimal performance. In other words, the way the code is structured optimally is

intertwined with the specific GPU implementation.

OpenCL (Open Compute Language)11 is an open standard for programming

heterogeneous systems. It defines an abstraction of an accelerator that matches very

well with a large class of accelerators, including GPUs, Field Programmable Gate Arrays

(FPGAs), the Cell Broadband Engine12 and mainstream CPUs. The programming model

is in many aspects similar to CUDA and maps well onto it. OpenCL code is prone to the

same limitations of performance portability as CUDA. However, OpenCL code is

functionally portable across a larger number of accelerators from a range of vendors.

As such, the performance portability problem can be considered to be more severe13.

Both CUDA and OpenCL define a kernel as a section of code that is applied across an

iteration range. The iteration range can be 1, 2 or 3-dimensional. The kernel code is

written in a simplified version of the C99 standard, where additional keywords have

been introduced to tag procedures that are kernels, as opposed to those that are

auxiliary procedures for kernels.

11 Khronos Group. The open standard for parallel programming of heterogeneous systems.
https://www.khronos.org/opencl/ Accessed 01 February 2016.
12 H. P. Hofstee. Power efficient processor architecture and the cell processor. In Proceedings of

the 11th International Symposium on High-Performance Computer Architecture, HPCA ’05,
pages 258–262, Washington, DC, USA, 2005. IEEE Computer Society.
13 S. Rul, H. Vandierendonck, D’Haene J., and K. De Bosschere. An experimental study on
performance portability of OpenCL kernels. In Symposium on Application Accelerators in High

Performance Computing, page 3, July 2010.

https://www.khronos.org/opencl/

24

D4.1 Programming Language and Runtime System: Requirements

 Java-C Bindings

The Java Native Interface (JNI)14 is the basic mechanism for creating bindings between

Java programs and low-level, machine-specific software. The JNI interfaces with the

Java object system and garbage collector to export a safe description of Java data

structures to external programs. It provides an efficient means to communicate

between Java programs and the outside world; however, it breaks many useful

properties of Java code such as out-of-bounds checking for arrays and pointer safety.

JCUDA15 is a set of JNI bindings between Java programs and the C-level CUDA library.

It provides an efficient means for Java programs to communicate with GPUs. However,

it is programmed as if CUDA is used from a C program, which involves much

boilerplate code and hardware-specific assumptions.

JOCL16 is for OpenCL what JCUDA is for CUDA: an interface to the standard OpenCL

library. Hereby, the OpenCL programming model is available to Java programs.

 Java-Language Integration

While native interfaces are available and provide high performance, they break the

programming abstractions built up and guaranteed by Java. As such, they are not a

desirable set of extensions for GPU programming in Java. Several programming

environments exist, however, that aim at providing a true Java-based GPU

programming environment.

3.3.3.1 JaBEE

JaBEE17 is a Java Binary Execution Environment that provides an abstract base class for

GPU kernels. Deriving classes should implement a run method that corresponds to the

14 Java SE 7 java native interface-related APIs and developer guides
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/ Accessed 01 February 2016
15 Java bindings for CUDA http://www.jcuda.org/ Accessed 01 February 2016
16 Java bindings for OpenCL http://www.jocl.org/ Accessed 01 February 2016
17 W. Zaremba, Y. Lin, and V. Grover. JaBEE: Framework for object-oriented java bytecode

compilation and execution on graphics processor units. In Proceedings of the 5th Annual
Workshop on General Purpose Processing with Graphics Processing Units, GPGPU-5, pages 74–

83, New York, NY, USA, 2012. ACM.

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://www.jcuda.org/
http://www.jocl.org/

25

D4.1 Programming Language and Runtime System: Requirements

kernel method, specifying what operations to execute for a specific thread in a thread

group. This method is intercepted by a compiler and automatically translated to GPU

assembly code. It has many similar restrictions as Aparapi, discussed below. However,

contrary to Aparapi, it does allow method calls on objects on the GPU side, including

calls to virtual methods.

3.3.3.2 HSAIL

The Heterogeneous System Architecture (HSA)18 is designed to efficiently support a

wide range of data-parallel and task-parallel programming models and to support

multiple instruction sets based on CPUs and accelerators, including GPUs. It bridges

the diversity in programming models and hardware through HSAIL19, a virtual

instruction set architecture (ISA).

3.3.3.3 Sumatra

HSAIL is a good candidate for an intermediate target for code generation, among

others, Java code translated to GPU instruction sets. The Sumatra20 project aims to do

exactly that. It aims to offload selected Java Stream API method calls. The stream API

provides a functional way to operate on collections of data, offering operations such as

map, filter, reduce, etc. Sumatra furthermore supports usage of Java objects, as well

as lambda functions. However, restrictions apply in regards to data types. For example,

stream operations must iterate over IntRange, Array or ArrayList in order to be

ported to the GPU. The reduce operation can only work with primitive integers.

While it offers an interesting perspective, development on the Sumatra project is

currently suspended as planned additions to Java 9 are crucial for its further

development.

18 HSA Foundation http://www.hsafoundation.com/standards/
19 HSA Programmer Reference Manual: HSAIL Virtual ISA and Programming Model, Compiler
Writer, and Object Format (BRIG), 1.0.1. edition

http://www.slideshare.net/hsafoundation/hsa-programmers-reference-manual-hsail-virtual-isa-
and-programming-model-compiler-writers-guide-and-object-format-brig-version-95 .
20 Project Sumatra, OpenJDK website http://openjdk.java.net/projects/sumatra/

http://www.hsafoundation.com/standards/
http://www.slideshare.net/hsafoundation/hsa-programmers-reference-manual-hsail-virtual-isa-and-programming-model-compiler-writers-guide-and-object-format-brig-version-95
http://www.slideshare.net/hsafoundation/hsa-programmers-reference-manual-hsail-virtual-isa-and-programming-model-compiler-writers-guide-and-object-format-brig-version-95
http://openjdk.java.net/projects/sumatra/

26

D4.1 Programming Language and Runtime System: Requirements

3.3.3.4 Aparapi

Aparapi21 is a Java library that converts Java bytecode to OpenCL at runtime. The

OpenCL code can then be executed by a GPU and, in principle, any OpenCL-compliant

device. Aparapi provides an abstract class Kernel that contains a run method which is

overridden to define the data parallel algorithm. The run method is constructed

similarly as the a CUDA or OpenCL kernel as it is executed multiple times, each time

applied to a specific index in the iteration range of the kernel. The iteration range is

defined separately in the startup method of the kernel.

Aparapi hides most of the complexity of writing OpenCL code while maintaining

common Java programming idioms and the use of the JVM to handle memory

management. Aparapi, however, imposes limitations to the types of data and

operations that can be used within a kernel. In particular, instances of Java objects

cannot be used, Java Class Library and user defined objects alike.

As a result, no calls to new can be made from within the run method. This means that

any data that is sent over to the GPU using Aparapi must be primitive and pre-

allocated. As well as this, only one-dimensional primitive arrays can be used, as a

multi-dimensional Java array is actually an array of array objects rather than a true

multi-dimensional array. Other Java features such as exceptions, overloaded methods,

for-each style loops and non-final static fields are not supported. Aparapi supports

execution model on the CPU by making use of the Java Thread Pool (JTP). The JTP is

used as a fallback if the kernel code is not compilable for the GPU, e.g. when

compilation fails due to hardware constraints, or when the code violates the limitations

set out above. This is useful also for heterogeneous clusters, where not all nodes are

equipped with a GPU, or have incompatible GPUs.

An alternative branch of Aparapi (the ”lambda branch”') interfaces Aparapi with HSAIL.

As such, this branch is compatible only with AMD GPUs and Advanced Processing Units

(APUs)22. This branch of Aparapi allows kernels to access Java objects and multi-

dimensional arrays. Moreover, the shared address space model of HSA implies that the

21 What is Aparapi? http://aparapi.github.io/ Accessed 01 February 2016
22 P. Rogers. Heterogeneous system architecture overview, August 2013. Hot Chips Tutorial.

http://aparapi.github.io/

27

D4.1 Programming Language and Runtime System: Requirements

CPU and GPU access the same global address space and can share data without

explicit transfers. There exists also an HSA emulator that can be used for functional

testing and development in the absence of real hardware.

3.3.3.5 RootBeer

Rootbeer23 allows programmers to express GPU kernels in Java code. The programmer

defines a base class that kernels need to specialise. The kernel code is expressed in a

way similar to CUDA and OpenCL, working under the assumption that the sequential

kernel code is instantiated repeatedly for every coordinate in the iteration range of the

kernel. Rootbeer uses Java byte-code inspection and translation and builds on the Soot

library for byte-code introspection24. Soot allows an application to traverse the abstract

representation of Java byte-codes and to generate corresponding GPU assembly code.

This GPU code is subsequently compiled and execute don the GPU.

Rootbeer is more complete than Aparapi, as it supports full access to the Java

language. It succeeds in this by serialising and de-serialising all data accessed by the

kernel prior to sending the data over. It is however not clear how efficiently each Java

feature can be executed by the GPU.

 Performance Considerations

Few papers have analysed the performance differences between the cited acceleration

programming models and systems. Docampo et al25 compare Aparapi against JCUDA,

23 Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. Rootbeer: Seamlessly using
gpus from java. In Proceedings of the 2012 IEEE 14th International Conference on High

Performance Computing and Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems, HPCC ’12, pages 375–380, Washington, DC, USA, 2012. IEEE

Computer Society.
24 R. Valle ́e-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a java

bytecode optimization framework. In Proceedings of the 1999 Conference of the Centre for

Advanced Studies on Collaborative Research, CASCON ’99, pages 13–. IBM Press, 1999.
25 J. Docampo, S. Ramos, G.L. Taboada, R.R. Exposito, J. Tourino, and R. Doallo. Evaluation of

java for general purpose gpu computing. In Advanced Information Networking and Ap-
plications Workshops (WAINA), 2013 27th International Conference on, pages 1398–1404,

March 2013.

28

D4.1 Programming Language and Runtime System: Requirements

native CUDA and CPU-only Java code using the SHOC benchmarks26. It shows that

JCUDA results in up to 4 times slower execution than native CUDA. Aparapi can be

between 2x faster and 8x slower than JCUDA, depending on the kernel.

3.4 Programming Models for the Xeon Phi

“Xeon Phi” is the brand-name of a series of processors based on Intel’s Many

Integrated Core (MIC) architecture that can act as accelerators. At the time of writing

this document, the current generation of Xeon Phi is named “Knights Corner” (KNC).

KNC Xeon Phi functions as an accelerator, like a GPU, attached via a PCI-Express link.

The next generation of Xeon Phi, which is to be named as “Knights Landing” (KNL), will

be released in late 2016 and will be shipped as two products. The initial release will act

as a stand-alone MIC processor. Later versions will follow the KNC paradigm of being

attached to a CPU, with the option of PCI-Express or the much faster OmniPath

interconnect. The following discussion will be focused on the KNC Xeon Phi as an

attached processor; however the user should find that most of it is applicable to its

next iterations, even as a stand-alone processor.

 MIC Hardware Architecture

The MIC architecture provides three important layers of assets which can be exploited

for massive parallelism. Any potential developer should be aware of these assets and

actively try to maximize their usage, in order to achieve high performance.

Firstly, as its name suggests, MIC processors offer a plethora of cores which can

communicate by using the platform’s shared DRAM. KNC processors feature up to 61

cores, whereas future generations will increase this number. Considering the emphasis

of the architecture on high bandwidth (up to 320 GB/s for KNC), communication

between the cores should not act as a bottleneck and hence, the developer is

encouraged to use the entirety of available hardware cores in parallel fashion for his

application.

26 A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and J.

S. Vetter. The scalable heterogeneous computing (SHOC) benchmark suite. In Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, GPGPU-3,

pages 63–74, New York, NY, USA, 2010. ACM.

29

D4.1 Programming Language and Runtime System: Requirements

Figure 9. Architecture of an Intel® Xeon Phi™ core27.

Secondly, each core features multi-threading technology, supporting up to 4 threads

executing on a core at the same time. This essentially means for a developer that KNC

processors can offer up to 244 threads operating simultaneously and their efficient

usage is critical to the platform’s performance.

Finally, each core uses 512-bit-wide Vector Processing Units (VPUs) which allow up to

16 single-precision, or 8 double-precision, operations per cycle. The VPUs are the

primary challenge the developer faces when trying to extract good performance out of

the MIC. Complicated code with many conditional jumps needs to be re-written in a

more streamlined fashion so that it becomes more VPU-friendly, otherwise the card’s

performance will most likely be unimpressive. It should be noted that there is a variety

of tools and well-written documentation on Vectorization and SIMD-instructions to aid

any potential developer.

27 George Chrysos, Intel Corporation, Intel® Xeon Phi™ X100 Family Coprocessor

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

30

D4.1 Programming Language and Runtime System: Requirements

 Modes of Operation

Figure 10. Different execution models on a typical node with Xeon CPU and Xeon Phi accelerator28.

As a PCIe card, the Xeon Phi is accessible via Secure Shell (ssh) connection from the

host; this is feasible due to the fact that a light Linux image is booted on the platform

on the node’s start-up. The user can treat the Xeon Phi as a stand-alone processor,

executing any code natively, as long as it is compiled with the Xeon Phi as its target

architecture. This is usually the optimum approach for highly parallel applications.

Alternatively, a code can run simultaneously on both the Xeon host and the Xeon Phi.

This is achievable in two ways: two different instances of the code can run on the two

machines, each compiled in accordance to the different underlying instruction set. The

two instances can communicate and synchronize as needed by treating the two

machines as different nodes in a virtual TCP/IP network, using widely-known methods

such as message-passing libraries (e.g. MPI). Alternatively, an application can be

developed with a host-and-accelerator paradigm in mind. Serial parts of the code are

executed on the Xeon host, which then assigns highly parallel regions to the Xeon Phi

28 Noah Clemons, Intel Corporation, Recommendations to choose the right MKL usage model
for Xeon Phi https://software.intel.com/en-us/articles/recommendations-to-choose-the-right-mkl-
usage-model-for-xeon-phi

https://software.intel.com/en-us/articles/recommendations-to-choose-the-right-mkl-usage-model-for-xeon-phi
https://software.intel.com/en-us/articles/recommendations-to-choose-the-right-mkl-usage-model-for-xeon-phi

31

D4.1 Programming Language and Runtime System: Requirements

via offload pragmas. This model of operation is strongly connected to the GPU-coding

paradigm. As with programming for GPUs, account must be taken of the relatively slow

communication between the host and the accelerator ensuring that pieces of work to

be offloaded are large enough to deliver a performance advantage despite the data

transfer costs.

Finally, heavily serial applications should not be run on the Xeon Phi processor at all;

relying on the Xeon host’s superior single-threaded performance.

 Programming Frameworks

At its core, the MIC architecture is based on its well-known x86 counterpart. In

essence, KNC cores are Pentium cores with heavy modifications to boost performance

and support SIMD instructions. As such, tools used to write parallel code on any x86-

based machine can be used for the Intel Xeon Phi. One of the most prominent tools for

C-language applications is OpenMP, which has been noted as having excellent results

on the platform, particularly for native execution. The MPI message passing library is

another candidate, since it allows symmetric execution of code between the host and

the Xeon Phi. It is also imperative to use MPI-like libraries for multi-node

implementations of an application on any cluster. For multi-node clusters, combining

the two tools is considered as a good practice. MPI functions allow for multiple

machines to communicate, handling inter-node operations, whereas OpenMP shows

superior performance when parallelizing intra-node tasks. This style of coding is often

referred-to as “Hybrid MPI and OpenMP Parallel Programming”.

Another notable tool for writing parallel applications on the machine is Intel Thread

Building Blocks (TBB). This is a C++ tool which allows the breaking-up of a workload in

tasks and assigns them to worker-threads. The tool exhibits similarities to the OpenMP

paradigm. Finally, applications making heavy use of mathematical functions may be

able to take advantage of Intel Math Kernel Library (MKL), which offers high-

performance functions solving well-established mathematical problems, such as Linear

Algebra, Fast Fourier Transforms (FFT) and statistical functions. The library supports

Xeon Phi platforms since its 11.0 – Update 2 version and is heavily optimized for taking

advantage of the platform’s wider VPUs.

32

D4.1 Programming Language and Runtime System: Requirements

 Performance Monitoring

Intel has released a series of tools aiding the developer working on the MIC

architecture in order to verify whether their application is working properly on the

platform. Intel’s VTune Amplifier is fairly straightforward tool that offers a wealth of

information for any application running a variety of platforms. The tool supports the

Xeon Phi architecture, offering useful insights into how efficiently its assets, particularly

the VPUs and the caches, are used. It should be noted however, that due to its

hardware-event sampling during the execution time, its time-overhead can be

overbearing, particularly for large analyses and irregular memory-access patterns.

Furthermore, some of its metrics, such as the estimated average usage of the VPUs

(called Vectorization Intensity), are not always reliable for long and complex codes.

Another tool of note from the same suite is Intel Advisor, which offers tips on how to

properly thread and vectorise an application. Finally, Intel ships the Xeon Phi with

some tools built-in its operating system for power monitoring. The micsmc tool allows

the host CPU to monitor and configure the Xeon Phi card’s status, including device

performance, driver info, temperatures, core usage, etc. However, little or no support

is offered in regards to dynamically scaling the cores’ levels of power consumption.

4 Background on Data Analytics Platforms

Data analytics platforms have been designed to simplify the job of the data analyst,

namely to perform analytics on terabyte-size data sets. Data analytics platforms

typically specialize on a specific set of workloads, e.g. batch processing, stream

processing or graph analytics. Data analytics platforms are typically designed to

execute on scale-out clusters of commodity processors.

4.1 Batch Processing

Batch processing involves the processing of a large quantity of data. No specific time

bounds are set on the processing although it is typically hoped that the processing

does not take too much time.

33

D4.1 Programming Language and Runtime System: Requirements

We can distinguish two generations of batch processing platforms. The first

generation, with Hadoop as its main example, is a programming framework centred on

the map-reduce parallel pattern. This parallel pattern allows the representation of

many computations in a way that allows parallel execution, but does not require the

programmer to coordinate the execution of tasks. Coordination, as well as data

partitioning and data distribution, is handled by Hadoop. Inputs and outputs of map

and reduce tasks are streamed from and to disk. As such, the performance of Hadoop

is strongly dominated by disk access times.

The second generation of batch processing platforms attempts to hold the intermediate

data sets in memory, thus significantly improving performance. The key example of

such systems is Spark.

Both Hadoop and Spark are organized as master/slave systems. Support for

redundancy is built-in and varies between masters and slaves. Slaves are requested by

the master to execute well-defined tasks. In case a slave fails, or is simply slow to

respond, the same task can be executed or re-executed by another slave. Failed slaves

are automatically restarted when they stop sending heartbeat messages at the

appropriate rate. Masters are protected against failures through a redundancy scheme.

 Acceleration of Batch Processing

Various techniques to accelerate Hadoop and Spark have been proposed in the

literature. These techniques employ GPU and/or FPGA acceleration programming

frameworks and aim to integrate the accelerated code as neatly into the analytics

framework as possible. Typically, however, analytics platforms are programmed using

high-level languages executed on managed runtimes, which stands in stark contrast

with the low-level programming approaches used for accelerators. Much attention has

been paid to this issue, which is typically resolved through using systems such as

JOCL, JNI and Aparapi to make the link between managed runtime and

accelerator29,30,31. Other issues that have been researched are the buffer management.

29 S. Okur, C. Radoi, and Y. Lin, “Hadoop+aparapi: Making heterogenous mapreduce

programming easier,” 2012, http://www.semihokur.com/docs/okur2012-hadoop - aparapi.pdf.

34

D4.1 Programming Language and Runtime System: Requirements

GPU buffers are pre-allocated with fixed size. It is however typically a priori unknown

how much data will be produced by analytics codes. This can be addressed by making

two passes over the data set: once to compute the required buffer size and one to

produce the data.32

There are several research efforts towards the acceleration of data analytics

applications based on distributed programming frameworks such as Hadoop and Spark.

One of the first attempts to accelerator cloud computing application using FPGA was

presented by Microsoft and Tsinghua University33. In this work a MapReduce

framework on FPGA, which provides programming abstraction, hardware architecture,

and basic building blocks to developers is presented. The performance evaluation of

the proposed system has been performed using the RankBoost application34 that is

used for page ranking. The most time consuming procedure of RankBoost is

WeakLearn, which consumes more than 95% execution time and it is the one that is

ported to the FPGA35. Both the mapper and the reduce tasks of the WeakLearn

algorithm have been mapped to the FPGA. To test the performance of the RankBoost

acceleration on FPMR, a real world dataset for a commercial search engine is used.

This time-consuming procedure achieves up to 16.74× speedup in the FPMR

framework while the overall system speedup is 14.44×.

30 R. Nitu, E. Apostol, and V. Cristea, “An improved gpu mapreduce framework for data

intensive applications,” in Intelligent Computer Communication and Process- ing (ICCP), 2014
IEEE International Conference on, Sept 2014, pp. 355–362.
31 M. Grossman, M. Breternitz, and V. Sarkar, “HadoopCL: Mapreduce on distributed
heterogeneous platforms through seamless integration of Hadoop and OpenCL,” in Parallel and

Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th

International, May 2013, pp. 1918–1927.
32 B. He, W. Fang, N. K. Govindaraju, Q. Luo, and T. Wang, “Mars: A mapreduce

framework on graphics processors,” in IEEE Conference on Parallel Architectures and
Compilation Techniques. Oct 2008, pp. 260–269.
33 Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, “Fpmr: Mapreduce framework on
fpga,” in Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, ser. FPGA ’10. New York, NY, USA: ACM, 2010, pp. 93–102
34 Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting algorithm for
combining preferences,” J. Mach. Learn. Res., vol. 4, pp. 933–969, Dec. 2003
35 N.-Y. Xu, X.-F. Cai, R. Gao, L. Zhang, and F.-H. Hsu, “Fpga acceleration of rankboost in web
search engines,” ACM Trans. Reconfigurable Technol. Syst., vol. 1, no. 4, pp. 19:1–19:19, Jan.

2009

35

D4.1 Programming Language and Runtime System: Requirements

An architecture for the FPGA acceleration of MapReduce applications has been

presented also by D. Yin et al.36 . A cluster of worker nodes is designed for the

MapReduce framework, and each worker node consists of both a CPU-based worker

and an FPGA-based worker. The CPU-based worker runs the major communications

with other worker node and tasks, while the FPGA-based worker operates extended

MapReduce tasks to speed up the computation processes. The proposed framework

has been implemented by modifying the open-source Hadoop project and mapped to

the NetFPGA boards. The CPU worker runs the modified Hadoop MapReduce program

which processes file system requests and transmits data to FPGA workers. The

proposed framework has been evaluated using two typical applications of the

MapReduce framework: matrix multiplication and page ranking. For the case of matrix

multiplication using one FPGA board, the proposed system can achieve almost 15×

speedup compared to CPU. In the case of the page ranking, the proposed system can

achieve approximately 4× faster execution time compared to the software execution.

An integrated FPGA architecture is proposed for the efficient implementation of the

MapReduce framework by NTUA and DUTH37,38. The proposed architecture implements

the Phoenix MapReduce framework that is a C-based version of MapReduce. In one

case, a HW-SW co-design is presented where the Map tasks are executed in the

processors and a specialized hardware accelerator is implemented for the efficient

processing of the Reduce tasks. In the second architecture (an integrated framework is

proposed where the whole application is mapped to the FPGA. The Map computational

kernels, that are usually application-specific, are created using High Level Synthesis

(HLS) tools and the Reduce tasks, which are common to most of the applications, are

executed using the common Reduce hardware accelerator. The presented system

proposes the complete decoupling of MapReduce tasks’ data-paths to distinct busses,

36 D. Yin, G. Li, and K.-d. Huang, “Scalable mapreduce framework on fpga accelerated

commodity hardware,” in Internet of Things, Smart Spaces, and Next Generation Networking,
ser. Lecture Notes in Computer Science, S. Andreev, S. Balandin, and Y. Koucheryavy, Eds., vol.

7469. Springer Berlin Heidelberg, 2012, pp. 280–294
37 C. Kachris, D. Diamantopoulos, G. C. Sirakoulis, and D. Soudris, “An fpga-based integrated
mapreduce accelerator platform,” Journal of Signal Processing Systems, pp. 1–13, 2016
38 C. Kachris, G. C. Sirakoulis, and D. Soudris, “A reconfigurable mapreduce accelerator for
multi-core all-programmable socs,” in System-on-Chip (SoC), 2014 International Symposium on,

Oct 2014, pp. 1–6.

36

D4.1 Programming Language and Runtime System: Requirements

accessed from individual processing engines. Such a dataflow approach implies a

holistic C/C++ to RTL domain-level MapReduce transition. The performance evaluation

shows that the proposed scheme can achieve up to 4.3× overall speedup (system

speedup) in MapReduce applications while offering significant lower power and energy

consumption compared to a high-end multi-core processor. Specifically, it can provide

up to 25× lower power consumption and up to 33× better energy efficiency compared

to the software-only solution in the low-power cores.

The University of Hong Kong has presented the design and implementation of the k-

means clustering algorithm on an FPGA-accelerated computer cluster39. The

implementation followed the MapReduce programming model, with both the map and

reduce functions executing autonomously on the CPU and on multiple FPGAs. A

hardware/software framework was developed to manage the execution on multiple

FPGAs across the cluster. The experiment was run on three compute nodes, each

containing a KC705 FPGA board from Xilinx. Each KC705 board contains a Kintex-7

FPGA connected to the CPU through a PCIe x3 interface. When compared to a similar

software implementation executing over the Hadoop MapReduce framework, from

15.5× to 20.6× performance improvement has been achieved across a range of input

data sets.

4.2 Stream Processing

In stream processing streams of messages arrive in the system and need to be

processed. Typically, messages are handled in multiple stages with each stage emitting

messages to the next. Stages can be interlinked in arbitrary complex ways. The key

example in this area is the Storm framework. Kafka is a related system providing a

publish-subscribe service. As with Hadoop and Spark, these systems are designed to

execute on scale-out systems and provide inherent fault-tolerance.

39 K. Neshatpour, M. Malik, M. A. Ghodrat, A. Sasan, and H. Homayoun, “Energy-efficient
acceleration of big data analytics applications using fpgas,” in Big Data (Big Data), 2015 IEEE

International Conference on, Oct 2015, pp. 115–123

37

D4.1 Programming Language and Runtime System: Requirements

 Acceleration of Stream Processing

We are aware of a few prior works in the area of accelerating stream processing.

Pinnecke et al40 have proposed GPU acceleration of stream processing in a row-

oriented database management system. They transform the row-oriented tables into

individual columns in order to make the data transfer to the GPU more efficient.

Nakagawa et al41 focus on the overlap of computation with communication in stream

processing on GPUs. Georgakoudis et al42 investigate how to evaluate heterogeneous

servers with different energy and performance, although not accelerated, for streaming

workloads. Their work can form a basis to evaluate the accelerated servers as well.

5 Requirements

WP5 of the VINEYARD project investigates and develops the VINEYARD programming

model, which consists of software support for heterogeneous computing, and the

VINEYARD acceleration library.

The VINEYARD programming model defines language extensions, library support and a

runtime system for expressing and executing programs on heterogeneous distributed

systems. The VINEYARD programming model must be designed in such a way that it

can achieve the required non-functional properties of the programs, in particular those

properties and metrics related to execution time and energy or power consumption.

The VINEYARD acceleration library is a repository of pre-defined kernels that capture

commonly occurring computations in the area of data analytics. These kernels are

optimized for FPGAs. Making these implementations available in a library facilitates the

adoption of the VINEYARD system.

40 M. Pinnecke, D. Broneske, G. Saake. Toward GPU Accelerated Data Stream Processing. In;

27th GI-Workshop on Foundations of Databases. 2015.
41 S. Nakagawa, F. Ino and K. Hagihara. A middleware for efficient stream processing in CUDA.
Computer Science – Research and Development. Springer. April 2010.
42 G. Georgakoudis, C. Gillan, A. Sayed, I. Spence, R. Faloon, D. S. Nikolopoulos. Iso-Quality of
Service: Fairly Ranking Servers for Real-Time Data Analytics. Parallel Processing Letters Vol. 25

No. 3. 2015.

38

D4.1 Programming Language and Runtime System: Requirements

The following sections elaborate the requirements for the VINEYARD programming

model and acceleration library.

5.1 Programming Model

 Programming Model Support for Accelerators

The programming model and runtime system should ideally support a wide range of

accelerators. As discussed extensively in section 3, accelerators are accompanied by a

variety of different programming models. The discrepancy between programming

FPGAs and GPUs is significant as they employ fundamentally different abstractions to

express parallelism. Maxeler DataFlow Engines represent programs as a fine-grain data

flow graph and extract parallelism from the repeated application of the data flow graph

to a stream of data. GPUs, on the other hand, use massively parallel programming

models which may result in streaming data from the GPU global memory into the

processor, but the resulting codes may also reuse smaller working sets in local

memory. Unifying these programming models behind a single interface is beyond the

scope of this project.

An attractive short-term solution is one where the programming model is extended to

allow definition of a number of alternative implementations of the same code, e.g. one

version for executing on the CPU, typically written in a high-level interpreted language

such as Scala, Java or Python, one version compiled to a bitstream for execution on

FPGAs, and one massively parallel version for execution on GPUs. The key problems to

be addressed by the programming model relate to how to represent these alternative

versions in a tractable way and how to understand the relative efficiency of various

implementations.

The design of the programming model needs to be a careful trade-off between the

tensions of programmer control, allowing expert programmers to control the runtime

system through the programming model in order to optimize non-functional metrics

such as performance and energy consumption, versus transparency, which implies that

the optimization of non-functional properties of the program execution is transparent

to the programmer or user. In general we desire to have transparency as it enhances

39

D4.1 Programming Language and Runtime System: Requirements

productivity and time-to-market. Nonetheless, we need to retain the option of manual

control and optimization of the program execution.

Summary of requirements:

 Support acceleration of big data analytics frameworks (e.g., Spark, Storm and

Heron) with accelerators including at least FPGAs and if possible also GPUs and

Xeon Phi accelerators.

 Support concise description of equivalent implementations of the same

algorithm and a uniform interface for invoking these implementations.

 If necessary, support annotation of equivalent implementations with additional

information in order to enable the VINEYARD runtime system to autonomously

select one version over another, or to efficiently load-balance work across

accelerators.

 Balance programmer control versus transparency through the design of the

programming model.

 Runtime System and Scheduling

The runtime system should be able to efficiently share data between the managed

language runtime, such as the Java Virtual Machine or the Python VM, and the memory

manager of accelerators. The latter are typically programmed at a low level of

abstraction, implying that memory management and data layout is under full control of

the programmer. The former, in contrast, uses automatic memory management

supported by garbage collection. Data layout and memory allocation cannot easily be

manipulated by programmers. It is however crucial that data is shared between both

environments with little or no overhead. The conventional solution of serialization,

translating a data set to a platform-independent bitstream, will therefore not lead to

acceptable non-functional properties. Different mechanisms need to be designed to

support data sharing between managed runtimes and accelerators. These mechanisms

should have minimal impact on the managed language runtime and the programming

API in order to facilitate adoption.

In the context of streaming data, there is a need for better scheduling policies. Data

streams have varying message rates and data volumes and may have different

40

D4.1 Programming Language and Runtime System: Requirements

computational complexity per message. Scheduling such streams is often done on a

per message basis. It is possible to achieve non-functional properties of the system in

a better way if we utilize fair-share allocation of data streams, i.e. scheduling streams

rather than scheduling individual messages.

Scheduling in heterogeneous systems requires careful balancing of a number of

parameters including job size, efficiency of executing a job on a particular resource,

availability of resources, communication efficiency of the accelerator, etc. Many of

these parameters are moreover dependent on the characteristics of the job, e.g. job

size for batch processing, and stream arrival rate and message workload complexity for

streaming systems. The VINEYARD runtime system should utilize these characteristics

to schedule jobs pro-actively and judiciously based on run-time information.

Summary of requirements:

 Develop techniques to efficiently share data between managed language

runtimes and low-level (bare-metal) programming environments typically used

on accelerators.

 Develop scheduling techniques for variable-rate data streams to optimize

throughput, resource utilization and/or energy efficiency building on the

concept of fair-share allocation.

 Develop scheduling techniques for hybrid scheduling across CPUs and

accelerators.

 Data Distribution

Distributed systems for big data processing employ some form of data distribution to

balance the workload across the distributed system. Adding heterogeneity into the mix

adds a new dimension along which data needs to be distributed: the accelerators’

private memories. The VINEYARD runtime system must be able to distribute data

between CPU memory and accelerator memory. The accelerator memory can be used

to store data for longer periods of time, thereby avoiding repeated data movement. As

an optimization, data required by the accelerator but not used by the CPU need never

be loaded in CPU memory. This requires moving directly from the master or I/O device

to accelerators and by-passing CPU memory.

41

D4.1 Programming Language and Runtime System: Requirements

Summary of requirements:

 Design a memory management subsystem to manage data distribution across

CPU nodes and accelerators.

 Optimize workload schedulers by taking into account existing data allocation

and minimizing data movement.

 Virtualization

Data analytics are often performed on cloud infrastructures where the hardware is

virtualized, e.g. through the VineTalk protocol developed in WP5 of the VINEYARD

project. Here, accelerators will be virtualized as well. The VINEYARD runtime system

needs to be tuned to execution scenarios using virtualized accelerators. This has an

impact on memory management and scheduling. Memory management techniques

must be aware that the memory space of a virtualized accelerator is shared between

resources. Scheduling techniques must take into sharing of virtualized accelerators,

which is possible, e.g. in the context of streaming workloads. In these cases, fair-share

scheduling and co-scheduling of CPU threads with threads communicating with the

accelerators is a necessity.43

Summary of requirements:

 Design scheduling strategies and runtime system support for virtualized

accelerators.

5.2 Acceleration Libraries

The hardware accelerators that will be developed in VINEYARD will be based on FPGAs

and dataflow engines than can be reconfigured to host several types of accelerators

such as compression, encryption, and machine learning kernels. The kernels will be

43 On the virtualization of CUDA based GPU remoting on ARM and X86 machines in the GVirtuS

framework. Raffaele Montella · Giulio Giunta · Giuliano Laccetti · Marco Lapegna · Carlo Palmieri
· Carmine Ferraro · Valentina Pelliccia · Cheol-Ho Hong · Ivor Spence · Dimitrios S.

Nikolopoulos. International Journal of Parallel Programming, to appear.

42

D4.1 Programming Language and Runtime System: Requirements

mapped in the accelerators in the form of IP blocks as library components. These

library components of IP blocks will be hosted in repositories (i.e. in the github

repository), and the user will have the option to select and import the required

accelerator based on the application requirements.

The following figure describes the overview of the acceleration libraries in the context

of VINEYARD. The applications that are written in high-level languages will define the

applications libraries that need to be hosted in the accelerators. The VINEYARD

framework, based on the required accelerators will automatically import the

accelerators in the form of IP blocks from the central repository (Accelerator IP

Repository) and will feed the scheduler. The VINEYARD scheduler, based on the

application requirements and the hardware resources (number of accelerators) will find

the optimum configuration and partitioning of the resources. The hardware controller

will then be used for the configuration and the programming on the hardware

resources based on the partitioning that has been performed.

Figure 11. High-level overview of the VINEYARD framework and the Acceleration library

Computational
neuroscience

Finance

Big Data Applications

VINEYARD Framework

Accelerator IP
Repository

Library of Hardware
functions as IP Blocks

Racks with
dataflow engines (DFE)

accelerators

Server Racks with
commodity
processor

Data AnalyticsResource Manager

DFE

DFE

DFE

DFE

Analytics

P

P

P

P

P

P

P

P
ACC

Racks with
FPGA/MPSoCs

accelerators

ACC ManagerScheduler
Machine Learning

In-memory Databases

Graph Computation

VINEYARD Platform

43

D4.1 Programming Language and Runtime System: Requirements

The programming model that will be developed in VINEYARD will deliver to the

programmers a seamless and transparent utilization of the hardware accelerators by

simply describing in the high level language the accelerators that will be instantiated.

This can be achieved for example by replacing a specific function that is used for a task

(e.g. compression) with a new function that calls the hardware accelerators for the

specific task.

5.3 Summary

Table 1 gives a summary of all requirements.

Table 1 Summary of requirements of the VINEYARD programming model and runtime system

Component Requirement

Programming model Support acceleration of big data analytics frameworks (e.g.,

Spark, Storm and Heron) with accelerators including at least

FPGAs and if possible also GPUs and Xeon Phi accelerators.

Support concise description of equivalent implementations

of the same algorithm and a uniform interface for invoking

these implementations.

If necessary, support annotation of equivalent

implementations with additional information in order to

enable the VINEYARD runtime system to autonomously

select one version over another, or to efficiently load-

balance work across accelerators.

Balance programmer control versus transparency through

the design of the programming model.

Runtime System Develop techniques to efficiently share data between

managed language runtimes and low-level (bare-metal)

44

D4.1 Programming Language and Runtime System: Requirements

programming environments typically used on accelerators.

Develop scheduling techniques for variable-rate data

streams to optimize throughput, resource utilization and/or

energy efficiency building on the concept of fair-share

allocation.

Develop scheduling techniques for hybrid scheduling across

CPUs and accelerators.

Design a memory management subsystem to manage data

distribution across CPU nodes and accelerators.

Optimize workload schedulers by taking into account

existing data allocation and minimizing data movement.

Design scheduling strategies and runtime system support

for virtualized accelerators.

Acceleration library Define library of reusable accelerator IP blocks

Optimize configuration of the IP blocks given available

hardware resources

6 Conclusion

The VINEYARD aims of easy and transparent acceleration of data analytics using a

choice of accelerators has been translated in a set of requirements. These

requirements aim to address open issues in the research landscape around

45

D4.1 Programming Language and Runtime System: Requirements

programming models and runtime system support for acceleration. Addressing these

issues will result in a major step forward in the achievement of the VINEYARD goals.

