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1 EXECUTIVE SUMMARY 

The VINEYARD projects aims to achieve easy-to-use and transparent acceleration of data 

analytics. One of the components in the VINEYARD is the programming model and runtime 
system support, which is developed in Work Package 4. This document elaborates the 

requirements for the VINEYARD programming model and runtime system. We have summarized 
12 requirements on the programming language, runtime system and acceleration library that 

are necessary to realize the goals and ambition of the VINEYARD project as it is shown in this 

table. 

Component Requirement 

Programming 
model 

Support acceleration of big data analytics frameworks (e.g., Spark, 
Storm and Heron) with accelerators including at least FPGAs and if 

possible also GPUs and Xeon Phi accelerators. 

Support concise description of equivalent implementations of the same 
algorithm and a uniform interface for invoking these implementations. 

If necessary, support annotation of equivalent implementations with 

additional information in order to enable the VINEYARD runtime system 
to autonomously select one version over another, or to efficiently load-

balance work across accelerators. 

Balance programmer control versus transparency through the design of 
the programming model. 

Runtime System 
Develop techniques to efficiently share data between managed 

language runtimes and low-level (bare-metal) programming 
environments typically used on accelerators. 

Develop scheduling techniques for variable-rate data streams to 

optimize throughput, resource utilization and/or energy efficiency 

building on the concept of fair-share allocation. 

Develop scheduling techniques for hybrid scheduling across CPUs and 

accelerators. 

Design a memory management subsystem to manage data distribution 

across CPU nodes and accelerators. 

Optimize workload schedulers by taking into account existing data 

allocation and minimizing data movement. 

Design scheduling strategies and runtime system support for virtualized 

accelerators. 

Acceleration 

library 

Define library of reusable accelerator IP blocks 

Optimize configuration of the IP blocks given available hardware 

resources 
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2 Introduction 

The aim of VINEYARD is to make accelerators easy and transparent to use such that 

infrastructure efficiency is improved and application-level Quality of Service (QoS) is 

enhanced. In order to help achieve this goal, Work Package 4 of the VINEYARD project 

aims to define a programming model and its accompanying runtime system that 

achieves the outlined goals. This programming model and runtime system will build on 

existing, leading big data analytics platforms and extend their capabilities with 

seamless and transparent acceleration. 

This deliverable is a summary of our initial study of the requirements of such 

extensions to data analytics platforms. It identifies key challenges that need to be 

addressed by WP4. 

2.1 Goal of Deliverable 

The aim of Task 4.1 is to define, design and implement the VINEYARD programming 

model and integrate programmable accelerators into the programming model using a 

library interface. The starting point of this task will be the Spark and Storm 

programming models for processing stationary and streaming data, respectively. 

Deliverable D4.1 is the first checkpoint of this development. 

2.2 Audience 

VINEYARD partners involved with developing and evaluating the VINEYARD 

programming framework (WP4) and the runtimes (WP5). Also the application partners 

involved with applying the VINEYARD programming framework to the use cases on 

neuro-computing, financial applications and data management applications. 

2.3 Document Structure 

This document first reviews the state-of-the-art in programming models for 

accelerators. It is necessary to integrate accelerator programming models for the 

supported accelerators in the VINEYARD programming model. Next, the document 

reviews data analytics platforms and prior work on applying acceleration to these 
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platforms. Finally, we deduce the requirements for the VINEYARD programming 

platform, which aims to address open issues. 

3 Background on Accelerator Programming Models 

3.1 Programming Models for FPGAs 

Field Programmable Gate Arrays (FPGAs) are integrated circuits designed to be 

configured/programmed after manufacturing. FPGAs are usually based on Look-Up 

Tables that can be programmed to execute logical and arithmetic operations.  

Although FPGAs were initially used as glue logic for digital design circuits, currently 

FPGAs are emerging as fully SoCs (system on chip) with many integrated devices such 

as memories, Digital Signal Processing Units (DSP), memory blocks (BRAM), and high-

speed transceivers that can reach up to 28 Gbps.  

 

Figure 1. Current FPGAs can integrate several specialized components such as Application Processors, 
Real-time Processors, Graphics Processors, High speed transceivers, power management, DSP and 

memory blocks, Source: Xilinx, 2016 

 

 Hardware Description Languages 

Despite the recent push toward high level synthesis (HLS), hardware description 

languages (HDLs) remain the most widely used programming model in field 



 

10 

 

D4.1 Programming Language and Runtime System: Requirements 

programmable gate array (FPGA) development. Specifically, two FPGA design 

languages have been used by most developers: VHDL and Verilog. Both of these 

“standard” HDLs emerged in the 1980s, initially intended only to describe and simulate 

the behavior of the circuit, not implement it. Most designs have been developed using 

one or the other of these languages.  

HDLs allow the designer to describe in full detail the logic circuit that will be 

implemented on the FPGA. The logic circuits that are described in HDL are then 

mapper to the logic resources of the FPGAs (for example a digital logic function can be 

mapped to a Look-Up Table in the FPGA that will operate as a digital logic function). 

 High level Synthesis (HLS) 

Although the most of the FPGAs are currently programmed using HDL, there are also 

other ways to program the FPGAs1.  

The C, C++ or System C option allows us to leverage the capabilities of the largest 

devices. The ability to use C-based languages for FPGA design is brought about by HLS 

(high level synthesis), which has been on the verge of a breakthrough now for many 

years with tools like Handle-C and so on. Recently it has become a reality with both 

major vendors, with Altera and Xilinx offering HLS within their toolsets Spectra-Q and 

Vivado HLx respectively. 

However, HLS has limitations when using C-based approaches, just like with traditional 

HDL you have to work with a subset of the language. For instance, it is difficult to 

synthesize and implement system calls, and users have to make sure everything is 

bounded and of a fixed size. 

Furthermore, dynamic memory allocation is not supported in HLS (malloc, free, etc.). 

Therefore, any legacy code that is written using dynamic memory management has to 

be modified accordingly.  

                                           

1 Adam Taylor, 10 Ways To Program Your FPGA, EETimes, online article,  

http://www.eetimes.com/document.asp?doc_id=1329857 

http://www.eetimes.com/document.asp?doc_id=1329857
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In general, C-based languages are not well suited for HLS. The major challenges are 

the lack of: 1) timing information in the code, 2) size-based data types (or variable bit 

length data types), 3) built-in concurrency model(s), 4) local memories separated from 

the abstraction of one large shared memory. While all these points are valid, the main 

attraction of C-based languages is familiarity. Most HLS tools using C-based languages 

provide workarounds for one or more of these obstacles2.  

One of the main benefits of HLS, however, is the ability to develop the algorithms in 

floating point and let the HLS tool address the floating- to fixed-point conversion. 

A number of other C-based implementations are available, such as OpenCL which is 

designed for software engineers who want to achieve performance boosts by using a 

FPGA without a deep understanding of FPGA design. Open Computing Language 

(OpenCL) is a programming language originally proposed by Apple Inc. and maintained 

by the Khronos Group3. The OpenCL specification provides a framework for 

programming parallel applications on a wide variety of platforms including CPUs, GPUs, 

DSPs, and FPGAs4. Moreover, OpenCL is a royalty-free, cross-platform, cross-vendor 

standard that targets supercomputers, embedded systems, and mobile devices. 

OpenCL allows programmers to use a single programming language to target a 

combination of different parallel computing platforms. Parallel computation is achieved 

through both task-level and data-level parallelism. The OpenCL framework provides an 

extension of C (based on C99) with parallel computing capabilities and the OpenCL 

API, which is an open standard for different devices. In the OpenCL programming 

model, a host is connected to one or more accelerator devices running OpenCL 

kernels. Device vendors provide OpenCL compilers and runtime libraries necessary to 

run the kernels. The host program is written in standard C in order to query, select, 

and initialize compute devices. Communication between the host program and 

accelerators is established through a set of abstract OpenCL library routines. Each 

                                           

2 S. A. Edwards, ‘‘The challenges of synthesizing hardware from C-like languages,’’ IEEE Design 

Test Comput., vol. 23, no. 5, pp. 375–386, 2006. 
3 Khronos. [Online]. Available: https://www.khronos.org/opencl   
4 N. Trevett, ‘‘OpenCL introduction,’’ in SIGGRAPH Asia, 2013, 
https://www.khronos.org/assets/uploads/developers/library/2013-siggraph-

asia/OpenCL%20Intro%20SIGGRAPH%20Asia%20Nov13.pdf  

https://www.khronos.org/opencl
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accelerator device is a collection of compute units with one or more processing 

elements. Each processing element executes code as SIMD or SPMD. 

In the FPGA industry, both Altera and Xilinx have announced support for OpenCL HLS 

in their FPGA development tools. Altera released an OpenCL SDK in 2013 that supports 

a subset of the OpenCL 1.0 specifications. Xilinx introduced support for OpenCL in their 

Vivado HLS tool in April 2014.  

Commercial frameworks  

Xilinx Vivado HLS 

Vivado High-Level Synthesis is a complete HLS environment from Xilinx. It has been in 

development for the last several years following Xilinx’s acquisition of AutoESL. Vivado 

HLS is available as a component of Xilinx’s larger Vivado Design Suite or as a 

standalone tool. Like most HLS tools, Vivado HLS is mostly oriented towards core 

generation over full system design. It is possible to create hybrid designs with portions 

of code running on a soft-core processor communicating with custom hardware 

accelerators. Depending on requirements, the hardware accelerator can be exported as 

one of several different Xilinx specific core formats for simple integration into other 

products, or just the HDL specification. 

The Vivado HLS tool is built using LLVM compiler framework5. As such it has access to 

many software optimizations (e.g., loop-unrolling, loop-rotation, deadcode elimination, 

etc.). However, hardware and software programing paradigms are inherently different 

so we cannot expect all of LLVM’s optimizations to work seamlessly for HLS. Several 

studies using Vivado HLS to generate FPGA accelerators have been demonstrated, 

including Dynamic Data Structures6, and real-time embedded system vision7. 

Xilinx also offers an integrated framework for the deployment of FPGAs in data centers. 

SDAccel’s architecturally optimizing compiler allows software developers to compile and 

                                           

5 LLVM. [Online]. Available: http://llvm.org/  
6 F. Winterstein, S. Bayliss, and G. A. Constantinides, ‘‘High-level synthesis of dynamic data 

structures: A case study using Vivado HLS,’’ in Int. Conf. FPT, Dec. 2013, pp. 362–365. 
7 J. Hiraiwa and H. Amano, ‘‘An FPGA implementation of reconfigurable real-time vision 

architecture,’’ in Adv. Inf. Netw. Appl. Workshops, Mar. 2013, pp. 150–155. 

http://llvm.org/
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optimize streaming, low-latency, and custom datapath applications. The SDAccel 

compiler targets high-performance Xilinx FPGAs and supports source code using any 

combination of OpenCL, C, C++, and kernels. According to Xilinx, the SDAccel compiler 

delivers as much as a 10X performance improvement over high-end CPUs with one 

tenth the power consumption of a GPU, while maintaining code compatibility and a 

traditional software programming model for easy application migration and cost 

savings. 

 

Figure 2. The Xilinx’s SDAccel framework for the programming of FPGA based on OpenCL. 

Altera 

The Altera OpenCL SDK provides software programmers an environment based on a 

multi-core programming model that abstracts away the underlying hardware details 

while maintaining efficient use of FPGA resources. The Altera Offline Compiler (AOC) is 

an offline compiler that translates OpenCL to Verilog and runtime libraries for the host 

application API and hardware abstractions. Unlike the OpenCL compiler for CPUs and 

GPUs, where parallel threads are executed on different cores, AOC transforms kernel 

functions into deeply pipelined hardware circuits to achieve parallelism. AOC uses a 

CLANG front-end to parse OpenCL extensions and intrinsics to produce unoptimized 

LLVM IR (intermediate code). The middle-end performs optimization with about 150 

compiler passes such as loop fusion, auto vectorization, and branch elimination. On the 

back-end, the compiler instantiates Verilog IP and manages control flow circuitry of 
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loops, memory stalls, and branching. Finally, the generated kernel is loaded onto an 

Altera FPGA using an OpenCL compatible hardware image. 

3.2 The Maxeler DFE Programming Model 

 Dataflow Engine Architecture 

Maxeler commercialises a dataflow-oriented computing approach that fundamentally 

differs from conventional CPUs which are instruction and control-flow oriented. A CPU 

works by reading and decoding instructions, loading data, carrying out an operation on 

the data, and writing the result back to memory. This process is fundamentally 

sequential and requires complex control units to manage the operation of the 

processor. In comparison, the execution model of a Data-Flow Engine (DFE) is greatly 

simplified8. Data flows from memory into the chip where arithmetic operations are 

carried out by chains of functional units (data-flow cores) which are statically 

interconnected in a topology corresponding to the implemented functionality. This is 

illustrated in Figure 3. Data simply streams from one functional unit directly to the next 

one without the need for instructions; it arrives just in time when it is needed and the 

final results flow back into memory. Every single data-flow core performs only a simple 

arithmetic operation such as multiplication or addition. Therefore, thousands of 

arithmetic units can be put onto a chip and all of them can potentially perform useful 

calculations all of the time. 

The dataflow pipeline is an application-specific compute structure which requires a 

reconfigurable chip substrate to create and customise the pipeline for a specific 

application. Maxeler realises Data-flow Engines by combining a large reconfigurable 

device with large amounts of DDR memory organised in multiple parallel channels. The 

structure of the current generation MAX4 DFE architecture is illustrated in Figure 4. It 

uses an Altera Stratix-V FPGA to provide the reconfigurable substrate for the data-flow 

computations.  

                                           

8 Tobias Becker, Oskar Mencer, Stephen Weston, Georgi Gaydadjiev. “Maxeler Data-Flow in 
Computational Finance” FPGA Based Accelerators for Financial Applications, pp 243-266, 

Springer, 2015. 
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Figure 3: A conventional control-flow oriented processor (a) compared to a data-flow engine (b). 

 

Figure 4: Structure of a Maxeler MAX4 data-flow engine. 

Altera Stratix-V FPGAs contain programmable logic resources in form of general-

purpose logic look-up tables, programmable interconnect, on-chip memory and 

programmable DSPs. These programmable resources are used to create the 

application-specific dataflow pipeline. Altera FPGAs also contain embedded memory 

blocks which are used in a DFE as so-called Fast Memory (FMEM). FMEM blocks are 

spread throughout the reconfigurable substrate and can be accessed at a total data-

rate of several terabytes per second. This is useful for local low-latency buffering of 

data. The FPGA is surrounded by large amounts of DRAM. This memory is called Large 
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Memory (LMEM). LMEM is used for bulk storage and streaming of data. A MAX4 card 

uses an 8-lane PCIe interface to the CPU which provides a total bandwidth of up to 

4GB/s. The card also provides several MaxRing connectors which create high-speed 

links directly between multiple DFE cards. Various electrical and optical MaxRing 

connector options are available. The next generation DFE to be developed in Vineyard 

will use a newer generation FPGA device but the overall concept of the DFE 

architecture will be maintained.  

Maxeler’s high-performance dataflow computing systems consist of multiple DFEs, 

CPUs, networking, and storage. Several system architectures are available and the 

overall component balance can be customised at system level to the requirements of 

the user. For example, Maxeler’s MPC-X series systems are pure dataflow appliances 

that integrate eight MAX4 DFE cards into a dense 1U industry-standard chassis. This is 

illustrated in Figure 5.  

 

Figure 5: A Maxeler MPC-X system with eight DFEs in a single node. Infiniband network is used to connect 
MPC-X with the CPUs. All DFEs can be allocated dynamically. 

The MPC-X system contains only DFE cards and no CPUs. Each DFE card contains 48 

GB of DRAM as LMEM and DFEs are directly connected through MaxRing in a 

bidirectional 1D array topology. The MPC-X system is connected to industry standard 

CPU servers via an Infiniband network. The CPU server acts as an application host and 

compute intensive tasks are offloaded to DFEs. This architecture allows a flexible 

number of CPU servers and MPC-X nodes to be connected via an Infiniband network, 
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and a various number of DFEs can be allocated dynamically to several host 

applications. Such scalability and flexibility is useful for applications with changing run-

time behaviour, e.g., a computation that has several stages, which differ in their 

behaviour or complexity. 

 DFE Platform Programming 

Programming a dataflow system requires the application to be described in a dataflow 

model. This involves splitting the application into its data plane and control plane. The 

data plane will be mapped onto the DFE and it will be highly efficient for carrying out 

large-scale computations with a static execution model. However, DFEs are not very 

efficient for computing small-scale problems with control-dominated dynamic 

behaviour. This part will be handled by a conventional CPU which acts as a host that 

sets up and controls the computation on the DFE and also and carries out the control-

intensive tasks. The dataflow part of the application will be described in MaxJ, a Java-

based meta-language while the control part is developed in C, C++ or other 

conventional programming approaches. Maxeler provides a programming environment 

and run-time system which comprises of several components: 

 MaxCompiler, a programming environment to develop data-flow applications. 

The compute-intensive DFE parts are described in the MaxJ programming 

language. The compute kernels handling the data-intensive part of the 

application and the associated manager, which orchestrates data movement 

within the DFE, are written using this language. The CPU part of the application 

can be written in C, C++, etc; 

 The SLiC (Simple Live CPU) interface, which is Maxeler's application 

programming interface for seamless CPU-DFE integration; 

 MaxelerOS, a software layer and run time between the SLiC interface, the Linux 

operating system and the hardware, which manages DFE hardware and CPU-

DFE interactions in a way transparent to the user; 

 MaxIDE, a specialised Eclipse-based integrated development environment for 

MaxJ and DFE design, a fast DFE software simulator and comprehensive debug 

provisions used during development. 
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To illustrate DFE programming in MaxJ we first consider the parallel execution model 

inside a DFE. All operations within a DFE are naturally parallel, and any operation 

specified in MaxJ code is parallel unless explicitly specified as sequential. The general 

model of a DFE is illustrated in Figure 6. Data streams from memory through a pipeline 

of data-flow cores with final results being streamed back to memory. Each data-flow 

core receives a continuous stream of data from either memory or from a previous 

data-flow core and the output data stream directly feeds into another data-flow core or 

back into memory. All data-flow cores operate concurrently and they are statically 

interconnected at design time. Hence, there is no control flow, synchronisation or 

routing necessary between data-flow cores. A CPU system is used to set up the 

computation on the DFE and to perform all the control-intensive tasks. 

 

Figure 6: Parallel execution in data-flow system. 

Inside the DFE, data-flow cores carry out the accelerated arithmetic and logic 

operations. Multiple data-flow cores form a compute kernel, and a so-called manager is 

responsible for managing the connections between the separate kernels, the 

connections to off-chip resources such as LMEM memory, and the various PCIe, 

Infiniband and MaxRing interconnects. Data-paths within kernels are deeply pipelined 

without any synchronisation concerns. During kernel development, a data-flow 

developer simply focuses on realising large degrees of parallelism and pipelining 

without having to worry about synchronisation or scheduling. MaxCompiler will perform 
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the scheduling of operations and balancing the data paths inside a kernel 

automatically. A manager configuration (not shown in Figure 6) is used to create the 

connections between the compute kernels and LMEM memory, CPU host memory and 

other IO interfaces.  

To program a data-flow engine, we create a completely parallel and fixed data-flow 

structure that can perform computations by simply streaming data through it. To 

illustrate this concept, we show how a simple loop computation can be transformed 

into a data-flow kernel. Let us consider an example where we want to calculate y = 

x2 + 3x + 17 over a data set. A conventional C program requires a for loop to 

repeat the computation over a dataset even though there is nothing inherently 

sequential in this computation: 

for (i = 0; i < numDataElements; i++)  { 

    x = input[i]; 

    y = x*x + 3*x + 17;     

    output[i] = y; 

} 

Figure 7 (left) shows a simple data-flow kernel representing the same computation. 

The operations that are located inside the body of the loop can be carried out by a 

fixed pipeline with two multipliers and two adders. The for loop is removed by using 

streaming inputs and outputs that are either connected to LMEM memory or CPU host 

memory. The arithmetic operations are also carried out concurrently rather than in 

sequence. A practical data-flow implementation can contain thousands of operators in 

a data-path all working concurrently (see Figure 7, right). The MaxJ kernel description 

that can generate this data-path is as follows: 

class SimpleCalc extends Kernel {      

    SimpleCalc() {          

        DFEVar x = io.input("x", dfeFloat(8,24));          

        DFEVar y = x * x + 3 * x + 17;         

        io.output("y", y, dfeFloat(8,24));         

    }  

} 

The MaxJ description begins by extending the kernel class. The kernel class is part of 

the Maxeler Java extensions and the user develops their own kernels by using 

inheritance. Next, we define a constructor for the class. It is important to point out that 

this MaxJ program will only run once to build the DFE configuration; the constructor 
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will facilitate building the data-flow implementation. To create the streaming inputs 

and outputs for the kernel, the methods io.input and io.output are used. Streaming 

inputs and outputs replace the for loop in the original C code that iterates over data. 

The input method also allows to fully customise the input number format. In this case, 

we use a standard single precision floating point format (8-bit exponent and a 24-bit 

mantissa), but MaxJ also supports custom data types that can be defined by the user. 

This is useful when optimising the numerical behaviour and performance. The 

computation itself is expressed in a very similar way as in the original C code. A 

variable type DFEVar is used to handle all streaming data. 

 

Figure 7: A simple data-flow graph (left). All arithmetic operations are carried out in parallel. A practical 
data-flow application (right) with 5000 arithmetic operators running concurrently in a data-flow pipeline. 

Another example of a MaxJ dataflow description is show below. The code performs a 

moving average computation over three data elements. The resulting dataflow kernel 

that is generated by MaxCompiler is shown in Figure 8. As it can be seen, a counter 

and a ternary operator implement a highly customised control structure tightly coupled 

with the dataflow path. This is an example of handling control in a dataflow kernel and 

in this case it handles the boundary conditions when no valid data are present. Another 
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important construct are stream offsets which allow access to data elements that are 

ahead or behind the current element in the stream. 

class MovingAv extends Kernel {      

    MovingAv() {          

        DFEVar x = io.input("x", dfeFloat(8,24)); 

        DFEVar x_prev = stream.offset(x, -1); 

        DFEVarx_next = stream.offset(x, +1); 

        DFEVar cnt = control.count.simpleCounter(32, N); 

        DFEVarvalid = (cnt > 0) & (cnt < (N-1)); 

        DFEVar y = valid ? (x_prev+x+x_next) / 3.0 : 0.0; 

        io.output("y", y, dfeFloat(8,24)); 

    } 

} 

 

 

Figure 8: Example of a DFE kernel performing a moving average computation. 

The result of compiling a MaxJ description using MaxCompiler is a binary file containing 

the FPGA configuration (referred as the .max file) that can be linked with the host 

application. Maxeler provides the SLiC API to invoke the max file from the host 

application code. SLiC provides various abstraction layers that let the programmer call 

the DFE with one simple function call or control it in more advanced ways.  

MaxCompiler automatically generates the necessary function prototypes. MaxelerOS is 

a run-time layer that handles interactions between host applications making SLiC calls 

and the DFEs. It coordinates the use of DFE resources at run time, and manages the 
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scheduling and data movement within Maxeler systems. More information on MaxJ and 

SliC can be found in the compiler documentation9. 

Code development can be done in MaxIDE, an Eclipse-based integrated development 

environment that provides a unified view of that project that includes kernel and 

manager code in MaxJ and the host application. It also provides a simulation and 

debugging environment for the project. 

A noteworthy characteristic of the DFE compute model is that the computation inside 

the DFE is entirely deterministic and predictable, making it easy to analyse and 

alleviate performance bottlenecks. This means the design can be analysed and 

optimised using simple spreadsheet calculations even before it has been compiled. The 

performance of a data-flow engine in terms of operations per second generally 

increases with the number of operations specified in a MaxJ data-flow design. Since all 

operations run in parallel, having more operations in the code automatically translates 

into more computations per fixed unit of time. The performance limit is reached when 

either the reconfigurable chip is completely filled up with arithmetic operators or the 

available memory bandwidth is fully consumed. Ideally, both should be utilised as close 

to 100% as possible. 

3.3 Programming Models for GPUs 

In this Section we give a brief overview of the prevalent approaches for heterogeneous 

programming in high-performance computing, in particular focussing on code 

acceleration with GPUs. 

 C Language Interfaces 

As GPU programming is concerned with low-level machine details, it should come as no 

surprise that the main programming models for GPUs are based on the C language. 

The Compute Unified Device Architecture (CUDA)10 is NVIDUA's proprietary 

                                           

9 Multiscale Dataflow Programming, Version 2015.2, Maxeler Technologies THIS NEEDS A WEB 

REFERENCE 
10 Parallel Programming and Computing Platform. 

http://www.nvidia.com/object/cuda_home_new.html Accessed 01 February 2016 

http://www.nvidia.com/object/cuda_home_new.html
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programming model for GPUs. The term 'unified' implies that the same programming 

model applies across all programmable NVIDIA GPUs, even though these GPUs have 

very different architectures. As such, the code will be functionally correct on all 

supported GPUs, but the performance of a CUDA program can vary strongly between 

GPUs. 

The architecture of GPUs differs between high-end and low-end GPUs and generally 

becomes more capable as device integration improves over time. As they have 

different numbers of compute units, internal registers, different amounts of local and 

global memory and different memory bandwidths, it may be necessary to restructure 

the code when moving from one type of GPU to another if one desires to maintain 

optimal performance. In other words, the way the code is structured optimally is 

intertwined with the specific GPU implementation. 

OpenCL (Open Compute Language)11 is an open standard for programming 

heterogeneous systems. It defines an abstraction of an accelerator that matches very 

well with a large class of accelerators, including GPUs, Field Programmable Gate Arrays 

(FPGAs), the Cell Broadband Engine12 and mainstream CPUs. The programming model 

is in many aspects similar to CUDA and maps well onto it. OpenCL code is prone to the 

same limitations of performance portability as CUDA. However, OpenCL code is 

functionally portable across a larger number of accelerators from a range of vendors. 

As such, the performance portability problem can be considered to be more severe13.  

Both CUDA and OpenCL define a kernel as a section of code that is applied across an 

iteration range. The iteration range can be 1, 2 or 3-dimensional. The kernel code is 

written in a simplified version of the C99 standard, where additional keywords have 

been introduced to tag procedures that are kernels, as opposed to those that are 

auxiliary procedures for kernels. 

                                           

11 Khronos Group. The open standard for parallel programming of heterogeneous systems. 
https://www.khronos.org/opencl/  Accessed 01 February 2016. 
12 H. P. Hofstee. Power efficient processor architecture and the cell processor. In Proceedings of 

the 11th International Symposium on High-Performance Computer Architecture, HPCA ’05, 
pages 258–262, Washington, DC, USA, 2005. IEEE Computer Society. 
13 S. Rul, H. Vandierendonck, D’Haene J., and K. De Bosschere. An experimental study on 
performance portability of OpenCL kernels. In Symposium on Application Accelerators in High 

Performance Computing, page 3, July 2010. 

https://www.khronos.org/opencl/
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 Java-C Bindings 

The Java Native Interface (JNI)14 is the basic mechanism for creating bindings between 

Java programs and low-level, machine-specific software. The JNI interfaces with the 

Java object system and garbage collector to export a safe description of Java data 

structures to external programs. It provides an efficient means to communicate 

between Java programs and the outside world; however, it breaks many useful 

properties of Java code such as out-of-bounds checking for arrays and pointer safety. 

JCUDA15 is a set of JNI bindings between Java programs and the C-level CUDA library. 

It provides an efficient means for Java programs to communicate with GPUs. However, 

it is programmed as if CUDA is used from a C program, which involves much 

boilerplate code and hardware-specific assumptions. 

JOCL16 is for OpenCL what JCUDA is for CUDA: an interface to the standard OpenCL 

library. Hereby, the OpenCL programming model is available to Java programs. 

 Java-Language Integration 

While native interfaces are available and provide high performance, they break the 

programming abstractions built up and guaranteed by Java. As such, they are not a 

desirable set of extensions for GPU programming in Java. Several programming 

environments exist, however, that aim at providing a true Java-based GPU 

programming environment. 

3.3.3.1 JaBEE 

JaBEE17 is a Java Binary Execution Environment that provides an abstract base class for 

GPU kernels. Deriving classes should implement a run method that corresponds to the 

                                           

14 Java SE 7 java native interface-related APIs and developer guides  
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/ Accessed 01 February 2016 
15 Java bindings for CUDA http://www.jcuda.org/ Accessed 01 February 2016 
16 Java bindings for OpenCL http://www.jocl.org/ Accessed 01 February 2016 
17 W. Zaremba, Y. Lin, and V. Grover. JaBEE: Framework for object-oriented java bytecode 

compilation and execution on graphics processor units. In Proceedings of the 5th Annual 
Workshop on General Purpose Processing with Graphics Processing Units, GPGPU-5, pages 74–

83, New York, NY, USA, 2012. ACM. 

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://www.jcuda.org/
http://www.jocl.org/
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kernel method, specifying what operations to execute for a specific thread in a thread 

group. This method is intercepted by a compiler and automatically translated to GPU 

assembly code. It has many similar restrictions as Aparapi, discussed below. However, 

contrary to Aparapi, it does allow method calls on objects on the GPU side, including 

calls to virtual methods. 

3.3.3.2 HSAIL 

The Heterogeneous System Architecture (HSA)18 is designed to efficiently support a 

wide range of data-parallel and task-parallel programming models and to support 

multiple instruction sets based on CPUs and accelerators, including GPUs. It bridges 

the diversity in programming models and hardware through HSAIL19, a virtual 

instruction set architecture (ISA). 

3.3.3.3 Sumatra 

HSAIL is a good candidate for an intermediate target for code generation, among 

others, Java code translated to GPU instruction sets. The Sumatra20 project aims to do 

exactly that. It aims to offload selected Java Stream API method calls. The stream API 

provides a functional way to operate on collections of data, offering operations such as 

map, filter, reduce, etc. Sumatra furthermore supports usage of Java objects, as well 

as lambda functions. However, restrictions apply in regards to data types. For example, 

stream operations must iterate over IntRange, Array or ArrayList in order to be 

ported to the GPU. The reduce operation can only work with primitive integers.  

While it offers an interesting perspective, development on the Sumatra project is 

currently suspended as planned additions to Java 9 are crucial for its further 

development. 

                                           

18 HSA Foundation http://www.hsafoundation.com/standards/      
19 HSA Programmer Reference Manual: HSAIL Virtual ISA and Programming Model, Compiler 
Writer, and Object Format (BRIG), 1.0.1. edition  

http://www.slideshare.net/hsafoundation/hsa-programmers-reference-manual-hsail-virtual-isa-
and-programming-model-compiler-writers-guide-and-object-format-brig-version-95   . 
20 Project Sumatra, OpenJDK website http://openjdk.java.net/projects/sumatra/   

http://www.hsafoundation.com/standards/
http://www.slideshare.net/hsafoundation/hsa-programmers-reference-manual-hsail-virtual-isa-and-programming-model-compiler-writers-guide-and-object-format-brig-version-95
http://www.slideshare.net/hsafoundation/hsa-programmers-reference-manual-hsail-virtual-isa-and-programming-model-compiler-writers-guide-and-object-format-brig-version-95
http://openjdk.java.net/projects/sumatra/
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3.3.3.4 Aparapi 

Aparapi21 is a Java library that converts Java bytecode to OpenCL at runtime. The 

OpenCL code can then be executed by a GPU and, in principle, any OpenCL-compliant 

device. Aparapi provides an abstract class Kernel that contains a run method which is 

overridden to define the data parallel algorithm. The run method is constructed 

similarly as the a CUDA or OpenCL kernel as it is executed multiple times, each time 

applied to a specific index in the iteration range of the kernel. The iteration range is 

defined separately in the startup method of the kernel. 

Aparapi hides most of the complexity of writing OpenCL code while maintaining 

common Java programming idioms and the use of the JVM to handle memory 

management. Aparapi, however, imposes limitations to the types of data and 

operations that can be used within a kernel. In particular, instances of Java objects 

cannot be used, Java Class Library and user defined objects alike. 

As a result, no calls to new can be made from within the run method. This means that 

any data that is sent over to the GPU using Aparapi must be primitive and pre-

allocated. As well as this, only one-dimensional primitive arrays can be used, as a 

multi-dimensional Java array is actually an array of array objects rather than a true 

multi-dimensional array. Other Java features such as exceptions, overloaded methods, 

for-each style loops and non-final static fields are not supported. Aparapi supports 

execution model on the CPU by making use of the Java Thread Pool (JTP). The JTP is 

used as a fallback if the kernel code is not compilable for the GPU, e.g. when 

compilation fails due to hardware constraints, or when the code violates the limitations 

set out above. This is useful also for heterogeneous clusters, where not all nodes are 

equipped with a GPU, or have incompatible GPUs. 

An alternative branch of Aparapi (the ”lambda branch”') interfaces Aparapi with HSAIL. 

As such, this branch is compatible only with AMD GPUs and Advanced Processing Units 

(APUs)22. This branch of Aparapi allows kernels to access Java objects and multi-

dimensional arrays. Moreover, the shared address space model of HSA implies that the 

                                           

21 What is Aparapi? http://aparapi.github.io/  Accessed 01 February 2016 
22 P. Rogers. Heterogeneous system architecture overview, August 2013. Hot Chips Tutorial. 

http://aparapi.github.io/
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CPU and GPU access the same global address space and can share data without 

explicit transfers. There exists also an HSA emulator that can be used for functional 

testing and development in the absence of real hardware. 

3.3.3.5 RootBeer 

Rootbeer23 allows programmers to express GPU kernels in Java code. The programmer 

defines a base class that kernels need to specialise. The kernel code is expressed in a 

way similar to CUDA and OpenCL, working under the assumption that the sequential 

kernel code is instantiated repeatedly for every coordinate in the iteration range of the 

kernel. Rootbeer uses Java byte-code inspection and translation and builds on the Soot 

library for byte-code introspection24. Soot allows an application to traverse the abstract 

representation of Java byte-codes and to generate corresponding GPU assembly code. 

This GPU code is subsequently compiled and execute don the GPU. 

Rootbeer is more complete than Aparapi, as it supports full access to the Java 

language. It succeeds in this by serialising and de-serialising all data accessed by the 

kernel prior to sending the data over. It is however not clear how efficiently each Java 

feature can be executed by the GPU. 

 Performance Considerations 

Few papers have analysed the performance differences between the cited acceleration 

programming models and systems. Docampo et al25 compare Aparapi against JCUDA, 

                                           

23 Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. Rootbeer: Seamlessly using 
gpus from java. In Proceedings of the 2012 IEEE 14th International Conference on High 

Performance Computing and Communication & 2012 IEEE 9th International Conference on 
Embedded Software and Systems, HPCC ’12, pages 375–380, Washington, DC, USA, 2012. IEEE 

Computer Society. 
24 R. Valle ́e-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a java 

bytecode optimization framework. In Proceedings of the 1999 Conference of the Centre for 

Advanced Studies on Collaborative Research, CASCON ’99, pages 13–. IBM Press, 1999. 
25 J. Docampo, S. Ramos, G.L. Taboada, R.R. Exposito, J. Tourino, and R. Doallo. Evaluation of 

java for general purpose gpu computing. In Advanced Information Networking and Ap- 
plications Workshops (WAINA), 2013 27th International Conference on, pages 1398–1404, 

March 2013. 
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native CUDA and CPU-only Java code using the SHOC benchmarks26. It shows that 

JCUDA results in up to 4 times slower execution than native CUDA. Aparapi can be 

between 2x faster and 8x slower than JCUDA, depending on the kernel. 

3.4 Programming Models for the Xeon Phi 

“Xeon Phi” is the brand-name of a series of processors based on Intel’s Many 

Integrated Core (MIC) architecture  that can act as accelerators. At the time of writing 

this document, the current generation of Xeon Phi is named “Knights Corner” (KNC). 

KNC Xeon Phi functions as an accelerator, like a GPU, attached via a PCI-Express link. 

The next generation of Xeon Phi, which is to be named as “Knights Landing” (KNL), will 

be released in late 2016 and will be shipped as two products. The initial release will act 

as a stand-alone MIC processor. Later versions will follow the KNC paradigm of being 

attached to a CPU, with the option of PCI-Express or the much faster OmniPath 

interconnect. The following discussion will be focused on the KNC Xeon Phi as an 

attached processor; however the user should find that most of it is applicable to its 

next iterations, even as a stand-alone processor. 

 MIC Hardware Architecture 

The MIC architecture provides three important layers of assets which can be exploited 

for massive parallelism. Any potential developer should be aware of these assets and 

actively try to maximize their usage, in order to achieve high performance. 

Firstly, as its name suggests, MIC processors offer a plethora of cores which can 

communicate by using the platform’s shared DRAM. KNC processors feature up to 61 

cores, whereas future generations will increase this number. Considering the emphasis 

of the architecture on high bandwidth (up to 320 GB/s for KNC), communication 

between the cores should not act as a bottleneck and hence, the developer is 

encouraged to use the entirety of available hardware cores in parallel fashion for his 

application. 

                                           

26 A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and J. 

S. Vetter. The scalable heterogeneous computing (SHOC) benchmark suite. In Proceedings of 
the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, GPGPU-3, 

pages 63–74, New York, NY, USA, 2010. ACM. 
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Figure 9. Architecture of an Intel® Xeon Phi™ core27.  

Secondly, each core features multi-threading technology, supporting up to 4 threads 

executing on a core at the same time. This essentially means for a developer that KNC 

processors can offer up to 244 threads operating simultaneously and their efficient 

usage is critical to the platform’s performance. 

Finally, each core uses 512-bit-wide Vector Processing Units (VPUs) which allow up to 

16 single-precision, or 8 double-precision, operations per cycle. The VPUs are the 

primary challenge the developer faces when trying to extract good performance out of 

the MIC. Complicated code with many conditional jumps needs to be re-written in a 

more streamlined fashion so that it becomes more VPU-friendly, otherwise the card’s 

performance will most likely be unimpressive. It should be noted that there is a variety 

of tools and well-written documentation on Vectorization and SIMD-instructions to aid 

any potential developer. 

                                           

27 George Chrysos, Intel Corporation, Intel® Xeon Phi™ X100 Family Coprocessor 

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner  

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
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 Modes of Operation 

 

Figure 10. Different execution models on a typical node with Xeon CPU and Xeon Phi accelerator28.  

As a PCIe card, the Xeon Phi is accessible via Secure Shell (ssh) connection from the 

host; this is feasible due to the fact that a light Linux image is booted on the platform 

on the node’s start-up. The user can treat the Xeon Phi as a stand-alone processor, 

executing any code natively, as long as it is compiled with the Xeon Phi as its target 

architecture. This is usually the optimum approach for highly parallel applications. 

Alternatively, a code can run simultaneously on both the Xeon host and the Xeon Phi. 

This is achievable in two ways: two different instances of the code can run on the two 

machines, each compiled in accordance to the different underlying instruction set. The 

two instances can communicate and synchronize as needed by treating the two 

machines as different nodes in a virtual TCP/IP network, using widely-known methods 

such as message-passing libraries (e.g. MPI). Alternatively, an application can be 

developed with a host-and-accelerator paradigm in mind. Serial parts of the code are 

executed on the Xeon host, which then assigns highly parallel regions to the Xeon Phi 

                                           

28 Noah Clemons, Intel Corporation,  Recommendations to choose the right MKL usage model 
for Xeon Phi  https://software.intel.com/en-us/articles/recommendations-to-choose-the-right-mkl-
usage-model-for-xeon-phi  

https://software.intel.com/en-us/articles/recommendations-to-choose-the-right-mkl-usage-model-for-xeon-phi
https://software.intel.com/en-us/articles/recommendations-to-choose-the-right-mkl-usage-model-for-xeon-phi
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via offload pragmas. This model of operation is strongly connected to the GPU-coding 

paradigm. As with programming for GPUs, account must be taken of the relatively slow 

communication between the host and the accelerator ensuring that pieces of work to 

be offloaded are large enough to deliver a performance advantage despite the data 

transfer costs. 

Finally, heavily serial applications should not be run on the Xeon Phi processor at all; 

relying on the Xeon host’s superior single-threaded performance. 

 Programming Frameworks 

At its core, the MIC architecture is based on its well-known x86 counterpart. In 

essence, KNC cores are Pentium cores with heavy modifications to boost performance 

and support SIMD instructions. As such, tools used to write parallel code on any x86-

based machine can be used for the Intel Xeon Phi. One of the most prominent tools for 

C-language applications is OpenMP, which has been noted as having excellent results 

on the platform, particularly for native execution. The MPI message passing library is 

another candidate, since it allows symmetric execution of code between the host and 

the Xeon Phi. It is also imperative to use MPI-like libraries for multi-node 

implementations of an application on any cluster. For multi-node clusters, combining 

the two tools is considered as a good practice. MPI functions allow for multiple 

machines to communicate, handling inter-node operations, whereas OpenMP shows 

superior performance when parallelizing intra-node tasks. This style of coding is often 

referred-to as “Hybrid MPI and OpenMP Parallel Programming”. 

Another notable tool for writing parallel applications on the machine is Intel Thread 

Building Blocks (TBB). This is a C++ tool which allows the breaking-up of a workload in 

tasks and assigns them to worker-threads. The tool exhibits similarities to the OpenMP 

paradigm. Finally, applications making heavy use of mathematical functions may be 

able to take advantage of Intel Math Kernel Library (MKL), which offers high-

performance functions solving well-established mathematical problems, such as Linear 

Algebra, Fast Fourier Transforms (FFT) and statistical functions. The library supports 

Xeon Phi platforms since its 11.0 – Update 2 version and is heavily optimized for taking 

advantage of the platform’s wider VPUs. 



 

32 

 

D4.1 Programming Language and Runtime System: Requirements 

 Performance Monitoring 

Intel has released a series of tools aiding the developer working on the MIC 

architecture in order to verify whether their application is working properly on the 

platform. Intel’s VTune Amplifier is fairly straightforward tool that offers a wealth of 

information for any application running a variety of platforms. The tool supports the 

Xeon Phi architecture, offering useful insights into how efficiently its assets, particularly 

the VPUs and the caches, are used. It should be noted however, that due to its 

hardware-event sampling during the execution time, its time-overhead can be 

overbearing, particularly for large analyses and irregular memory-access patterns. 

Furthermore, some of its metrics, such as the estimated average usage of the VPUs 

(called Vectorization Intensity), are not always reliable for long and complex codes. 

Another tool of note from the same suite is Intel Advisor, which offers tips on how to 

properly thread and vectorise an application. Finally, Intel ships the Xeon Phi with 

some tools built-in its operating system for power monitoring. The micsmc tool allows 

the host CPU to monitor and configure the Xeon Phi card’s status, including device 

performance, driver info, temperatures, core usage, etc. However, little or no support 

is offered in regards to dynamically scaling the cores’ levels of power consumption. 

4 Background on Data Analytics Platforms 

Data analytics platforms have been designed to simplify the job of the data analyst, 

namely to perform analytics on terabyte-size data sets. Data analytics platforms 

typically specialize on a specific set of workloads, e.g. batch processing, stream 

processing or graph analytics. Data analytics platforms are typically designed to 

execute on scale-out clusters of commodity processors. 

4.1 Batch Processing 

Batch processing involves the processing of a large quantity of data. No specific time 

bounds are set on the processing although it is typically hoped that the processing 

does not take too much time. 
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We can distinguish two generations of batch processing platforms. The first 

generation, with Hadoop as its main example, is a programming framework centred on 

the map-reduce parallel pattern. This parallel pattern allows the representation of 

many computations in a way that allows parallel execution, but does not require the 

programmer to coordinate the execution of tasks. Coordination, as well as data 

partitioning and data distribution, is handled by Hadoop. Inputs and outputs of map 

and reduce tasks are streamed from and to disk. As such, the performance of Hadoop 

is strongly dominated by disk access times. 

The second generation of batch processing platforms attempts to hold the intermediate 

data sets in memory, thus significantly improving performance. The key example of 

such systems is Spark. 

Both Hadoop and Spark are organized as master/slave systems. Support for 

redundancy is built-in and varies between masters and slaves. Slaves are requested by 

the master to execute well-defined tasks. In case a slave fails, or is simply slow to 

respond, the same task can be executed or re-executed by another slave. Failed slaves 

are automatically restarted when they stop sending heartbeat messages at the 

appropriate rate. Masters are protected against failures through a redundancy scheme. 

 Acceleration of Batch Processing 

Various techniques to accelerate Hadoop and Spark have been proposed in the 

literature. These techniques employ GPU and/or FPGA acceleration programming 

frameworks and aim to integrate the accelerated code as neatly into the analytics 

framework as possible. Typically, however, analytics platforms are programmed using 

high-level languages executed on managed runtimes, which stands in stark contrast 

with the low-level programming approaches used for accelerators. Much attention has 

been paid to this issue, which is typically resolved through using systems such as 

JOCL, JNI and Aparapi to make the link between managed runtime and 

accelerator29,30,31. Other issues that have been researched are the buffer management. 

                                           

29 S. Okur, C. Radoi, and Y. Lin, “Hadoop+aparapi: Making heterogenous mapreduce 

programming easier,” 2012, http://www.semihokur.com/docs/okur2012-hadoop - aparapi.pdf. 
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GPU buffers are pre-allocated with fixed size. It is however typically a priori unknown 

how much data will be produced by analytics codes. This can be addressed by making 

two passes over the data set: once to compute the required buffer size and one to 

produce the data.32 

There are several research efforts towards the acceleration of data analytics 

applications based on distributed programming frameworks such as Hadoop and Spark.   

One of the first attempts to accelerator cloud computing application using FPGA was 

presented by Microsoft and Tsinghua University33. In this work a MapReduce 

framework on FPGA, which provides programming abstraction, hardware architecture, 

and basic building blocks to developers is presented. The performance evaluation of 

the proposed system has been performed using the RankBoost application34 that is 

used for page ranking. The most time consuming procedure of RankBoost is 

WeakLearn, which consumes more than 95% execution time and it is the one that is 

ported to the FPGA35. Both the mapper and the reduce tasks of the WeakLearn 

algorithm have been mapped to the FPGA. To test the performance of the RankBoost 

acceleration on FPMR, a real world dataset for a commercial search engine is used. 

This time-consuming procedure achieves up to 16.74× speedup in the FPMR 

framework while the overall system speedup is 14.44×. 

                                                                                                                            

30 R. Nitu, E. Apostol, and V. Cristea, “An improved gpu mapreduce framework for data 

intensive applications,” in Intelligent Computer Communication and Process- ing (ICCP), 2014 
IEEE International Conference on, Sept 2014, pp. 355–362. 
31 M. Grossman, M. Breternitz, and V. Sarkar, “HadoopCL: Mapreduce on distributed 
heterogeneous platforms through seamless integration of Hadoop and OpenCL,” in Parallel and 

Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th 

International, May 2013, pp. 1918–1927. 
32 B. He, W. Fang, N. K. Govindaraju, Q. Luo, and T. Wang, “Mars: A mapreduce 

framework on graphics processors,” in IEEE Conference on Parallel Architectures and 
Compilation Techniques. Oct 2008, pp. 260–269. 
33 Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, “Fpmr: Mapreduce framework on 
fpga,” in Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field 

Programmable Gate Arrays, ser. FPGA ’10. New York, NY, USA: ACM, 2010, pp. 93–102 
34 Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting algorithm for 
combining preferences,” J. Mach. Learn. Res., vol. 4, pp. 933–969, Dec. 2003 
35  N.-Y. Xu, X.-F. Cai, R. Gao, L. Zhang, and F.-H. Hsu, “Fpga acceleration of rankboost in web 
search engines,” ACM Trans. Reconfigurable Technol. Syst., vol. 1, no. 4, pp. 19:1–19:19, Jan. 

2009 
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An architecture for the FPGA acceleration of MapReduce applications has been 

presented also by D. Yin et al.36 . A cluster of worker nodes is designed for the 

MapReduce framework, and each worker node consists of both a CPU-based worker 

and an FPGA-based worker. The CPU-based worker runs the major communications 

with other worker node and tasks, while the FPGA-based worker operates extended 

MapReduce tasks to speed up the computation processes. The proposed framework 

has been implemented by modifying the open-source Hadoop project and mapped to 

the NetFPGA boards. The CPU worker runs the modified Hadoop MapReduce program 

which processes file system requests and transmits data to FPGA workers. The 

proposed framework has been evaluated using two typical applications of the 

MapReduce framework: matrix multiplication and page ranking. For the case of matrix 

multiplication using one FPGA board, the proposed system can achieve almost 15× 

speedup compared to CPU. In the case of the page ranking, the proposed system can 

achieve approximately 4× faster execution time compared to the software execution. 

An integrated FPGA architecture is proposed for the efficient implementation of the 

MapReduce framework by NTUA and DUTH37,38. The proposed architecture implements 

the Phoenix MapReduce framework that is a C-based version of MapReduce. In one 

case, a HW-SW co-design is presented where the Map tasks are executed in the 

processors and a specialized hardware accelerator is implemented for the efficient 

processing of the Reduce tasks. In the second architecture (an integrated framework is 

proposed where the whole application is mapped to the FPGA. The Map computational 

kernels, that are usually application-specific, are created using High Level Synthesis 

(HLS) tools and the Reduce tasks, which are common to most of the applications, are 

executed using the common Reduce hardware accelerator. The presented system 

proposes the complete decoupling of MapReduce tasks’ data-paths to distinct busses, 

                                           

36 D. Yin, G. Li, and K.-d. Huang, “Scalable mapreduce framework on fpga accelerated 

commodity hardware,” in Internet of Things, Smart Spaces, and Next Generation Networking, 
ser. Lecture Notes in Computer Science, S. Andreev, S. Balandin, and Y. Koucheryavy, Eds., vol. 

7469. Springer Berlin Heidelberg, 2012, pp. 280–294 
37  C. Kachris, D. Diamantopoulos, G. C. Sirakoulis, and D. Soudris, “An fpga-based integrated 
mapreduce accelerator platform,” Journal of Signal Processing Systems, pp. 1–13, 2016 
38 C. Kachris, G. C. Sirakoulis, and D. Soudris, “A reconfigurable mapreduce accelerator for 
multi-core all-programmable socs,” in System-on-Chip (SoC), 2014 International Symposium on, 

Oct 2014, pp. 1–6. 
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accessed from individual processing engines. Such a dataflow approach implies a 

holistic C/C++ to RTL domain-level MapReduce transition. The performance evaluation 

shows that the proposed scheme can achieve up to 4.3× overall speedup (system 

speedup) in MapReduce applications while offering significant lower power and energy 

consumption compared to a high-end multi-core processor. Specifically, it can provide 

up to 25× lower power consumption and up to 33× better energy efficiency compared 

to the software-only solution in the low-power cores. 

The University of Hong Kong has presented the design and implementation of the k-

means clustering algorithm on an FPGA-accelerated computer cluster39. The 

implementation followed the MapReduce programming model, with both the map and 

reduce functions executing autonomously on the CPU and on multiple FPGAs. A 

hardware/software framework was developed to manage the execution on multiple 

FPGAs across the cluster. The experiment was run on three compute nodes, each 

containing a KC705 FPGA board from Xilinx. Each KC705 board contains a Kintex-7 

FPGA connected to the CPU through a PCIe x3 interface. When compared to a similar 

software implementation executing over the Hadoop MapReduce framework, from 

15.5× to 20.6× performance improvement has been achieved across a range of input 

data sets. 

4.2 Stream Processing 

In stream processing streams of messages arrive in the system and need to be 

processed. Typically, messages are handled in multiple stages with each stage emitting 

messages to the next. Stages can be interlinked in arbitrary complex ways. The key 

example in this area is the Storm framework. Kafka is a related system providing a 

publish-subscribe service. As with Hadoop and Spark, these systems are designed to 

execute on scale-out systems and provide inherent fault-tolerance. 

                                           

39  K. Neshatpour, M. Malik, M. A. Ghodrat, A. Sasan, and H. Homayoun, “Energy-efficient 
acceleration of big data analytics applications using fpgas,” in Big Data (Big Data), 2015 IEEE 

International Conference on, Oct 2015, pp. 115–123 
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 Acceleration of Stream Processing 

We are aware of a few prior works in the area of accelerating stream processing. 

Pinnecke et al40 have proposed GPU acceleration of stream processing in a row-

oriented database management system. They transform the row-oriented tables into 

individual columns in order to make the data transfer to the GPU more efficient. 

Nakagawa et al41 focus on the overlap of computation with communication in stream 

processing on GPUs. Georgakoudis et al42 investigate how to evaluate heterogeneous 

servers with different energy and performance, although not accelerated, for streaming 

workloads. Their work can form a basis to evaluate the accelerated servers as well. 

5 Requirements 

WP5 of the VINEYARD project investigates and develops the VINEYARD programming 

model, which consists of software support for heterogeneous computing, and the 

VINEYARD acceleration library. 

The VINEYARD programming model defines language extensions, library support and a 

runtime system for expressing and executing programs on heterogeneous distributed 

systems. The VINEYARD programming model must be designed in such a way that it 

can achieve the required non-functional properties of the programs, in particular those 

properties and metrics related to execution time and energy or power consumption. 

The VINEYARD acceleration library is a repository of pre-defined kernels that capture 

commonly occurring computations in the area of data analytics. These kernels are 

optimized for FPGAs. Making these implementations available in a library facilitates the 

adoption of the VINEYARD system. 

                                           

40 M. Pinnecke, D. Broneske, G. Saake. Toward GPU Accelerated Data Stream Processing. In; 

27th GI-Workshop on Foundations of Databases. 2015. 
41 S. Nakagawa, F. Ino and K. Hagihara. A middleware for efficient stream processing in CUDA. 
Computer Science – Research and Development. Springer. April 2010. 
42 G. Georgakoudis, C. Gillan, A. Sayed, I. Spence, R. Faloon, D. S. Nikolopoulos. Iso-Quality of 
Service: Fairly Ranking Servers for Real-Time Data Analytics. Parallel Processing Letters Vol. 25 

No. 3. 2015. 
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The following sections elaborate the requirements for the VINEYARD programming 

model and acceleration library. 

 

5.1 Programming Model 

 Programming Model Support for Accelerators 

The programming model and runtime system should ideally support a wide range of 

accelerators. As discussed extensively in section 3, accelerators are accompanied by a 

variety of different programming models. The discrepancy between programming 

FPGAs and GPUs is significant as they employ fundamentally different abstractions to 

express parallelism. Maxeler DataFlow Engines represent programs as a fine-grain data 

flow graph and extract parallelism from the repeated application of the data flow graph 

to a stream of data. GPUs, on the other hand, use massively parallel programming 

models which may result in streaming data from the GPU global memory into the 

processor, but the resulting codes may also reuse smaller working sets in local 

memory. Unifying these programming models behind a single interface is beyond the 

scope of this project. 

An attractive short-term solution is one where the programming model is extended to 

allow definition of a number of alternative implementations of the same code, e.g. one 

version for executing on the CPU, typically written in a high-level interpreted language 

such as Scala, Java or Python, one version compiled to a bitstream for execution on 

FPGAs, and one massively parallel version for execution on GPUs. The key problems to 

be addressed by the programming model relate to how to represent these alternative 

versions in a tractable way and how to understand the relative efficiency of various 

implementations. 

The design of the programming model needs to be a careful trade-off between the 

tensions of programmer control, allowing expert programmers to control the runtime 

system through the programming model in order to optimize non-functional metrics 

such as performance and energy consumption, versus transparency, which implies that 

the optimization of non-functional properties of the program execution is transparent 

to the programmer or user. In general we desire to have transparency as it enhances 
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productivity and time-to-market. Nonetheless, we need to retain the option of manual 

control and optimization of the program execution. 

Summary of requirements: 

 Support acceleration of big data analytics frameworks (e.g., Spark, Storm and 

Heron) with accelerators including at least FPGAs and if possible also GPUs and 

Xeon Phi accelerators. 

 Support concise description of equivalent implementations of the same 

algorithm and a uniform interface for invoking these implementations. 

 If necessary, support annotation of equivalent implementations with additional 

information in order to enable the VINEYARD runtime system to autonomously 

select one version over another, or to efficiently load-balance work across 

accelerators. 

 Balance programmer control versus transparency through the design of the 

programming model. 

 Runtime System and Scheduling 

The runtime system should be able to efficiently share data between the managed 

language runtime, such as the Java Virtual Machine or the Python VM, and the memory 

manager of accelerators. The latter are typically programmed at a low level of 

abstraction, implying that memory management and data layout is under full control of 

the programmer. The former, in contrast, uses automatic memory management 

supported by garbage collection. Data layout and memory allocation cannot easily be 

manipulated by programmers. It is however crucial that data is shared between both 

environments with little or no overhead. The conventional solution of serialization, 

translating a data set to a platform-independent bitstream, will therefore not lead to 

acceptable non-functional properties. Different mechanisms need to be designed to 

support data sharing between managed runtimes and accelerators. These mechanisms 

should have minimal impact on the managed language runtime and the programming 

API in order to facilitate adoption. 

In the context of streaming data, there is a need for better scheduling policies. Data 

streams have varying message rates and data volumes and may have different 
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computational complexity per message. Scheduling such streams is often done on a 

per message basis. It is possible to achieve non-functional properties of the system in 

a better way if we utilize fair-share allocation of data streams, i.e. scheduling streams 

rather than scheduling individual messages. 

Scheduling in heterogeneous systems requires careful balancing of a number of 

parameters including job size, efficiency of executing a job on a particular resource, 

availability of resources, communication efficiency of the accelerator, etc. Many of 

these parameters are moreover dependent on the characteristics of the job, e.g. job 

size for batch processing, and stream arrival rate and message workload complexity for 

streaming systems. The VINEYARD runtime system should utilize these characteristics 

to schedule jobs pro-actively and judiciously based on run-time information. 

Summary of requirements: 

 Develop techniques to efficiently share data between managed language 

runtimes and low-level (bare-metal) programming environments typically used 

on accelerators. 

 Develop scheduling techniques for variable-rate data streams to optimize 

throughput, resource utilization and/or energy efficiency building on the 

concept of fair-share allocation. 

 Develop scheduling techniques for hybrid scheduling across CPUs and 

accelerators. 

 Data Distribution 

Distributed systems for big data processing employ some form of data distribution to 

balance the workload across the distributed system. Adding heterogeneity into the mix 

adds a new dimension along which data needs to be distributed: the accelerators’ 

private memories. The VINEYARD runtime system must be able to distribute data 

between CPU memory and accelerator memory. The accelerator memory can be used 

to store data for longer periods of time, thereby avoiding repeated data movement. As 

an optimization, data required by the accelerator but not used by the CPU need never 

be loaded in CPU memory. This requires moving directly from the master or I/O device 

to accelerators and by-passing CPU memory. 
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Summary of requirements: 

 Design a memory management subsystem to manage data distribution across 

CPU nodes and accelerators. 

 Optimize workload schedulers by taking into account existing data allocation 

and minimizing data movement. 

 Virtualization 

Data analytics are often performed on cloud infrastructures where the hardware is 

virtualized, e.g. through the VineTalk protocol developed in WP5 of the VINEYARD 

project. Here, accelerators will be virtualized as well. The VINEYARD runtime system 

needs to be tuned to execution scenarios using virtualized accelerators. This has an 

impact on memory management and scheduling. Memory management techniques 

must be aware that the memory space of a virtualized accelerator is shared between 

resources. Scheduling techniques must take into sharing of virtualized accelerators, 

which is possible, e.g. in the context of streaming workloads. In these cases, fair-share 

scheduling and co-scheduling of CPU threads with threads communicating with the 

accelerators is a necessity.43 

Summary of requirements: 

 Design scheduling strategies and runtime system support for virtualized 

accelerators. 

 

5.2 Acceleration Libraries 

The hardware accelerators that will be developed in VINEYARD will be based on FPGAs 

and dataflow engines than can be reconfigured to host several types of accelerators 

such as compression, encryption, and machine learning kernels. The kernels will be 

                                           

43 On the virtualization of CUDA based GPU remoting on ARM and X86 machines in the GVirtuS 

framework. Raffaele Montella · Giulio Giunta · Giuliano Laccetti · Marco Lapegna · Carlo Palmieri 
· Carmine Ferraro · Valentina Pelliccia · Cheol-Ho Hong · Ivor Spence · Dimitrios S. 

Nikolopoulos. International Journal of Parallel Programming, to appear. 
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mapped in the accelerators in the form of IP blocks as library components. These 

library components of IP blocks will be hosted in repositories (i.e. in the github 

repository), and the user will have the option to select and import the required 

accelerator based on the application requirements. 

The following figure describes the overview of the acceleration libraries in the context 

of VINEYARD.  The applications that are written in high-level languages will define the 

applications libraries that need to be hosted in the accelerators. The VINEYARD 

framework, based on the required accelerators will automatically import the 

accelerators in the form of IP blocks from the central repository (Accelerator IP 

Repository) and will feed the scheduler. The VINEYARD scheduler, based on the 

application requirements and the hardware resources (number of accelerators) will find 

the optimum configuration and partitioning of the resources. The hardware controller 

will then be used for the configuration and the programming on the hardware 

resources based on the partitioning that has been performed.  

 

Figure 11. High-level overview of the VINEYARD framework and the Acceleration library 
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The programming model that will be developed in VINEYARD will deliver to the 

programmers a seamless and transparent utilization of the hardware accelerators by 

simply describing in the high level language the accelerators that will be instantiated. 

This can be achieved for example by replacing a specific function that is used for a task 

(e.g. compression) with a new function that calls the hardware accelerators for the 

specific task.  

5.3 Summary 

Table 1 gives a summary of all requirements. 

Table 1 Summary of requirements of the VINEYARD programming model and runtime system 

Component Requirement 

Programming model Support acceleration of big data analytics frameworks (e.g., 

Spark, Storm and Heron) with accelerators including at least 

FPGAs and if possible also GPUs and Xeon Phi accelerators. 

Support concise description of equivalent implementations 

of the same algorithm and a uniform interface for invoking 

these implementations. 

If necessary, support annotation of equivalent 

implementations with additional information in order to 

enable the VINEYARD runtime system to autonomously 

select one version over another, or to efficiently load-

balance work across accelerators. 

Balance programmer control versus transparency through 

the design of the programming model. 

Runtime System Develop techniques to efficiently share data between 

managed language runtimes and low-level (bare-metal) 
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programming environments typically used on accelerators. 

Develop scheduling techniques for variable-rate data 

streams to optimize throughput, resource utilization and/or 

energy efficiency building on the concept of fair-share 

allocation. 

Develop scheduling techniques for hybrid scheduling across 

CPUs and accelerators. 

Design a memory management subsystem to manage data 

distribution across CPU nodes and accelerators. 

Optimize workload schedulers by taking into account 

existing data allocation and minimizing data movement. 

 

Design scheduling strategies and runtime system support 

for virtualized accelerators. 

Acceleration library Define library of reusable accelerator IP blocks 

Optimize configuration of the IP blocks given available 

hardware resources 

 

6 Conclusion 

The VINEYARD aims of easy and transparent acceleration of data analytics using a 

choice of accelerators has been translated in a set of requirements. These 

requirements aim to address open issues in the research landscape around 
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programming models and runtime system support for acceleration. Addressing these 

issues will result in a major step forward in the achievement of the VINEYARD goals. 

 


