
 

  

DOCUMENT ID D2.3 CONTRACT START DATE 1st FEBRUARY 2016 

CONTRACT DURATION 36 Months 

  

 

 

DUE DATE 30/04/2017 

DELIVERY DATE 18/05/2017 

CLASIFICATION Confidential 

AUTHOR/S C. Kachris, A. Bilas, N.  Chrysos, H. 
Vandierendonck   

DOCUMENT VERSION 1.0 

D2.3: System architecture 



 

 

2 

 

 

D2.3: System architecture 

1 EXECUTIVE SUMMARY 
VINEYARD aims at making accelerators easy and transparent to use for the purpose of 
significantly improving infrastructure efficiency while achieving application-side Quality 
of Service (QoS). VINEYARD proposes new approaches to integrating accelerators in 
datacenter environments and to dealing with heterogeneity and transparency issues.  

This document describes the overall architecture of VINEYARD and specifically the 
hardware and the software components that are developed in VINEYARD. VINEYARD’s 
goal is to both develop energy efficient hardware-accelerated servers and to develop the 
required framework for the seamlessly utilization of these servers in the programming 
frameworks that are widely used by the applications developers.  

To this end, this document describes the VINEYARD platform and the VINEYARD 
framework. The VINEYARD platform consists of the hardware devices that are used and 
developed during the project while the VINEYARD framework consists of all the software, 
middleware, APIs, libraries and GUIs that are developed for the efficient integration of 
the hardware platforms.  

The VINEYARD platform consists of the following hardware platforms: 
- Developed in VINEYARD 

o Dataflow engines (Maxeler MAX5) 
o FPGA-based servers (Bull Purley servers using Xeon +FPGA based on QPI 

interface) 
- Available for verification and validation 

o Dataflow engines (Maxeler MAX 4) 
o FPGA-based servers connected to the Intel processors through PCIe 
o MPSoC-based servers based on the Zynq all-programmable FPGAs 
o Xeon Phi accelerators (Knights Landing and Knights Corner) 

The VINEYAD framework consists of the following components 
- Resource Manager and Scheduler 
- Virtualization (VineTalk and VineController) 
- VineSim (Simulator for design space exploration and optimization) 
- Vineyard Repository of hardware accelerators (VineStore) 
- Programming model APIs and drivers 
- VineFrame (web-based GUI for the control of the VINEYARD platform) 

This document describes the overall architecture of the VINEYARD platform and the 
VINEYARD framework and how the software and hardware modules developed in the 
project are integrated into a unified system. As some of these modules are still under 
development the final integrated system for the VINEYARD framework and the 
VINEYARD platform will be reported in D6.1 (Integration of the VINEYARD framework, 
M30) and D6.3 (Integration of programmable accelerated servers, M33) respectively.  
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2 Related work – A survey on Hardware Accelerators 
for Cloud Computing 

In the last couple of years there are several reconfigurable architectures that have been 
proposed for the acceleration of cloud computing applications in data centers. This 
deliverable presents a thorough survey of the FPGA-based accelerators for cloud 
computing that have been recently presented in the research literature.  

The document first presents the frameworks that have been presented for the efficient 
deployment and virtualization of the FPGA-based hardware accelerators.  

 

2.1 Integrated frameworks for FGPAs in the Data Centers 

In the last years, several efforts have been presented for the efficient deployment of 
FPGAs in the Data Centers. This section presented the most promising integrated 
frameworks for the efficient deployment of FPGAs in the data centers both from industry 
and from academia. 

 IBM SupperVessel 

FPGAs in the Cloud 

In 1, a general framework is proposed for integrating FPGAs into the cloud by IBM. The 
framework proposes an accelerator pool (AP) that abstracts FPGA as a consumable 
resource while avoiding hardware dependencies of current FPGA technologies. In the AP 
abstraction, each FPGA has several pre-defined accelerators slots in which the hardware 
accelerators can be mapped. By utilizing the partial reconfiguration mechanism of the 
FPGAs, each slot can be considered a virtual resource that can be assigned for specific 
tasks. A cloud tenant can submit either pre-defined hardware accelerators that are 
hosted in central repository or can submit his own designs. However, in the latter case 
the cloud owner should perform the synthesis, place and route and generate the 
bitstreams for the FPGA slots.  

The proposed framework supports two different methods for translating address 
between the guest physical address of the virtual machines and the host physical 
address. The first method copies data between the VM memory and the host buffers. 
This method (VM-copy) is easy to implement but a creates a data copy overhead. 
Another method, called VM-nocopy, maintains a fixed mapping between the virtual and 
the host address space. This method does not introduce a data copy overhead but it 

                                            
 
1 F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, andK. Wang, “Enabling fpgas in the 
cloud,” in Proceedings of the11th ACM Conference on Computing Frontiers, ser. CF ’14. New York, 
NY, USA: ACM, 2014, pp. 3:1–3:10. 
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requires several modifications to the host OS to reserve large blocks of physic memory 
and modifications to the memory allocation methods of VM.  

A prototype of the framework is implemented on an x86-based Linux-KVM environment 
with attached FPGAs and deployed in a modified OpenStack cloud environment. Four 
different accelerators are used for prototyping: Encryption (AES), Hashing (SHA), Stereo 
matching and Matrix-Vector Multiply. The performance evaluation shows that proposed 
framework allows the efficient utilization of the FPGA resources by the cloud tenants 
with less than 4 microseconds latency overhead of the visualization. 

 

HyperScale Data Centers 

A similar framework is also proposed by IBM Zurich that allows cloud users to combine 
multiple FPGAs in the programmable fabric2. This allows cloud operators to offer an FPGA 
to users in a similar way as a standard server. In the proposed framework, multiple user 
applications can be hosted on a single physical FPGA, somehow similar to multiple VMs 
running on the same hypervisor. Each user can get a partition of the entire user logic 
and uses it to implement its own applications. This partitioning is achieved by utilizing 
partial reconfiguration. With partial reconfiguration, it is possible to dynamically 
reconfigure a portion of the FPGA while the rest of the regions remain untouchable. 

The users first decide on the required number of vFPGAs and customizes them using 
their own custom hardware accelerators. The user can then define its fabric topology by 
connecting those customized vFPGAs. When a request from a cloud user arrives, the 
accelerator scheduler searches the FPGA pool to find a user logic resource that matches 
the vFPGA request. When the scheduler matches the request with the required FPGA 
then the interface for access to the vFPGA is offered to the user. Finally, the user rents 
the defined virtualized fabric from the IaaS vendor.  

The proposed architecture has been integrated into the OpenStack framework and allows 
the renting of the FPGA resources on the cloud. The same architecture also allows the 
possibility to distribute their applications on a large number of FPGAs through an FPGA 
fabric. The integrated framework with multiple FPGAs is compared with a typical data 
center based on commodity processors. It is shown that if each system is based on 2048 
module the FPGA-based system can provide 958 TFLOPS compared with the 442 TFLOPS 
offered by the commodity processors. 

                                            
 
2 J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling fpgas in hyperscale data 
centers,” in 2015 IEEE International Conference on Cloud and Big Data Computing (CBDCom 
2015), May 2015. 
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Figure 1. Hyperscale Data Centers from IBM 

 Virtualized Hardware accelerators, University of Toronto 

In 3, a novel approach for integrating virtualized FPGA-based hardware resources into 
cloud computing systems with minimal overhead. The proposed framework allows cloud 
users to load and utilize hardware accelerators across multiple FPGAs using the same 
methods as the utilization of Virtual Machines. The reconfigurable resources of the FPGA 
are offered to the users as a generic cloud resources through OpenStack.  

An agent is introduced in this framework that implements the resource management of 
the OpenStack. The proposed framework splits the FPGA into several reconfigurable 
regions, each of which is managed a s single resource. Therefore, instead of a single 
                                            
 
3 S. Byma, J. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow, “FPGAs in the cloud: Booting 
virtualized hardware accelerators with open-stack,” in Field-Programmable Custom Computing 
Machines (FCCM), 2014 IEEE 22nd Annual International Symposium on, May 2014, pp. 109–116. 
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FPGA bitstream, a collection of partial reconfigurable bitstreams corresponding to the 
user hardware is passed to the agent. Again, as in the case of the IBM, the cloud provider 
must generate the partial bitstream for each accelerator and for each partially 
reconfigurable slot since the current technology requires specific bitstreams for each 
region of the FPGA.  

The proposed system can set up and tear down virtual accelerators in 2.6 on average. 
The static virtualization hardware on the physical FPGA has a minimum overhead (only 
three clock cycles). The proposed system is implemented and evaluated in a NetFPGA-
10 platform. The prototype system implemented four virtual reconfigurable modules on 
one device. 

 

Figure 2. Toronto’s system overview for virtualized FPGAs in the data centers. 

 

 RC3E: Reconfigurable Cloud Computing Environment 

In 4, a cloud hypervisor is proposed by Technical University of Dresden that integrates 
virtualized FPGA-based hardware accelerators into the cloud environment. The 
hypervisor allows users to implement and execute their own hardware designs on virtual 
FPGAs. The hypervisor has access to a database containing all physical and virtual FPGA 
devices in the cloud system and their allocation status. Each device is assigned to its 
physical host system (node). 

                                            
 
4 O. Knodel and R. G. Spallek, “RC3E: provision and management of reconfigurable hardware 
accelerators in a cloud environment,” in 2nd International Workshop on FPGAs for Software 
Programmers, 2015 
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The user can allocate a complete physical FPGA, which has to be marked separately in 
the device database or can allocate portion of the vFPGA. In the case of vFPGA allocation, 
the configuration is performed by utilizing partial reconfiguration (PR). The proposed 
architecture included also a Reconfigurable Cloud Computing Framework (RC2F), that is 
used for the realizing the vFPGA concept and allows integration of user cores. The main 
part of the RC2F framework consists of a controller managing the configuration and the 
user cores as well as the monitoring of status information.  

The proposed framework supports the required security by protecting the device files 
using access rights. This additional virtualization layer allows concurrent users to interact 
with their allocated devices without influencing each other. The proposed framework is 
prototyped using a matrix multiplication applications. The matrix multiplication offers 
both high amounts of data and computational complexity. The host application starts 
individual parallel user threads sending matrices to the cores, measures runtime and 
calculates the throughput. 

 

 

Figure 3. System overview of the RC3E architecture 
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 Virtualized FPGA accelerators, University of Warwick 

In 5, a novel framework is presented that integrates reconfigurable accelerators in a 
standard server with virtualized resource management and communication. The 
proposed framework integrates a PCIe based FPGA board into a standard data center 
server. The FPGA is partitioned into separate accelerator slots. Accelerator functions are 
either stored in a library on the host machine as partial bitstreams or can be uploaded 
by the user.  

Each physical FPGA is divided into multiple partially reconfigurable regions (PRRs), which 
act as virtual FPGAs (vFPGAs) for hosting accelerators. vFPGAs are interfaced with the 
host FPGA’s PCIe and DRAM physical interfaces for communication and data storage. 
The logic to manage these physical interfaces is implemented in the FPGA static logic. A 
vFPGA can be configured with a compatible partial bitstream to implement a virtual FPGA 
accelerator (vFA). A vFPGA can host multiple vFAs. %To enable portability and simplify 
vFA design, the vFPGAs all have a standard interface: a single AXI4-Stream interface to 
the PCIe core and another AXI4-Stream interface to external DRAM.  

In this framework, a hypervisor is implemented for the configuration and the scheduling 
of the user logic in the FPGA resources. When an accelerator is to be configured in the 
FPGA, the hypervisor decides on the optimal partial reconfiguration regions (PRRs) to 
host it and initiates reconfiguration. The hypervisor also maintains a list of the available 
PRRs and configured accelerators to avoid unnecessary reconfiguration when a required 
accelerator is already present in the FPGA and not in use. As a use-case study, it has 
been implemented a map-reduce accelerator for word counting, which finds the number 
of occurrences of a specified word in a large data set, useful in data mining applications. 
%In this use-case 8 mappers have been implemented in the proposed framework in a 
VC709 board consuming only 24W.  

The virtualized FPGA implementation surpasses the software only computational 
efficiency once the FPGA is used over 12% of the time. 

 

  

                                            
 
5 S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accelerators for efficient cloud 
computing,” in 7th IEEE International Conference on Cloud Computing Technology and Science, 
CloudCom 2015, Vancouver, BC, Canada, November 30 - Dec. 3, 2015, 2015, pp. 430–435. 



 

 

12 

 

 

D2.3: System architecture 

3 VINEYARD System architecture 
The VINEYARD project is developing novel servers coupled with FPGA accelerators and 
programmable dataflow engines and that can be customized based on the data-centre’s 
application requirements. These programmable FPGA accelerators and dataflow engines 
will be used not only to increase the performance of servers but also to reduce the 
energy consumption in data centres. 

Furthermore, VINEYARD is also developing a programming framework that will hide the 
complexity of programming heterogeneous systems while at the same time providing 
the optimized performance of customized and heterogeneous architectures. VINEYARD 
is also developing a new programming framework that seamlessly leverage workload-
specific accelerators based on the application requirements. In this suite, the user works 
with familiar programming frameworks (i.e. Spark) while a run-time manager selects 
appropriate accelerators based on application requirements such as execution time and 
power consumption. 

This section provides the overall system architecture of the VINEYARD framework and 
the interfaces between the modules.  

Figure 4 depicts the high-level overview of the VINEYARD platform. Applications that are 
targeting heterogeneous data centers using traditional servers or micro-servers are 
programmed using traditional data center frameworks, such as Spark, or more 
application specific frameworks such as the PyNN framework that is used for neural 
networks. In these applications, VINEYARD will provide the required APIs that will enable 
the utilization of the heterogeneous infrastructures without any other modifications in 
the sources codes.  

However, some of the tasks are common across several applications such as sorting of 
data, key/value processing, encryption, compression, pattern matching, etc. and are 
extremely computationally intensive. These tasks can be implemented in hardware as 
customized intellectual-property (IP) accelerators that can achieve much higher 
performance with lower power consumption. These hardware accelerators are stored in 
an IP repository (VineStore) that interface with the VINEYARD resource manager and 
scheduler. For each application there are several version of the accelerators based on 
the available platform (FPGA, DFE, Xeon Phi, MPSoC). 

The resource manager allocates resources from the heterogenous platform and dispatch 
the jobs to these nodes based on the application requirements. The resource manager 
communicates with the Maxeler Orchestrator and the FPGA/MPSoC orchestrator that 
keep the information of the status of these accelerators. The Resource manager also 
contains the IP Library controller that is used to fetch and dispatch the right hardware 
accelerator from the IP library based on the available resources (FPGA, DFE, Phi, or 
MPSoC).  

Each node in the platform can host a typical high performance general purpose 
processor, a dataflow engine, an FPGA-based server or an MPSoC-based server. The 
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specifications and the details for each platform that is used and the VINEYARD 
framework are described in detail in the following sections. The Software stack of each 
node contains the VMs that are running on the processor, the Local scheduler that 
dispatches the job to the local accelerators, the VineTalk that allows the virtualization of 
the underlying hardware resources, and the VineController that serializes the jobs to the 
hardware resources. VineController communicates with the accelerator’ drivers that are 
based on the accelerators’ vendors.  

On top of the VINEYARD resource manager, a web-based GUI, called VineFrame, can be 
used to allow the control and the utilization of the available resources in an easy-to-use 
graphical interface. For example, the VineFrame can be customized to the applications 
for each heterogeneous platform (BrainFrame allows the utilization of the Pynn 
framework in the VINEYTARD heterogenous resources).  

Each section, in this document describes in more detail the building blocks of the 
VINEYARD platform and the VINEYARD framework.   
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Figure 4. VINEYARD overall system architecture. 

 


