

DOCUMENT ID D2.3 CONTRACT START DATE 1st FEBRUARY 2016

CONTRACT DURATION 36 Months

DUE DATE 30/04/2017

DELIVERY DATE 18/05/2017

CLASIFICATION Confidential

AUTHOR/S C. Kachris, A. Bilas, N. Chrysos, H.
Vandierendonck

DOCUMENT VERSION 1.0

D2.3: System architecture

2

D2.3: System architecture

1 EXECUTIVE SUMMARY
VINEYARD aims at making accelerators easy and transparent to use for the purpose of
significantly improving infrastructure efficiency while achieving application-side Quality
of Service (QoS). VINEYARD proposes new approaches to integrating accelerators in
datacenter environments and to dealing with heterogeneity and transparency issues.

This document describes the overall architecture of VINEYARD and specifically the
hardware and the software components that are developed in VINEYARD. VINEYARD’s
goal is to both develop energy efficient hardware-accelerated servers and to develop the
required framework for the seamlessly utilization of these servers in the programming
frameworks that are widely used by the applications developers.

To this end, this document describes the VINEYARD platform and the VINEYARD
framework. The VINEYARD platform consists of the hardware devices that are used and
developed during the project while the VINEYARD framework consists of all the software,
middleware, APIs, libraries and GUIs that are developed for the efficient integration of
the hardware platforms.

The VINEYARD platform consists of the following hardware platforms:
- Developed in VINEYARD

o Dataflow engines (Maxeler MAX5)
o FPGA-based servers (Bull Purley servers using Xeon +FPGA based on QPI

interface)
- Available for verification and validation

o Dataflow engines (Maxeler MAX 4)
o FPGA-based servers connected to the Intel processors through PCIe
o MPSoC-based servers based on the Zynq all-programmable FPGAs
o Xeon Phi accelerators (Knights Landing and Knights Corner)

The VINEYAD framework consists of the following components
- Resource Manager and Scheduler
- Virtualization (VineTalk and VineController)
- VineSim (Simulator for design space exploration and optimization)
- Vineyard Repository of hardware accelerators (VineStore)
- Programming model APIs and drivers
- VineFrame (web-based GUI for the control of the VINEYARD platform)

This document describes the overall architecture of the VINEYARD platform and the
VINEYARD framework and how the software and hardware modules developed in the
project are integrated into a unified system. As some of these modules are still under
development the final integrated system for the VINEYARD framework and the
VINEYARD platform will be reported in D6.1 (Integration of the VINEYARD framework,
M30) and D6.3 (Integration of programmable accelerated servers, M33) respectively.

3

D2.3: System architecture

CONTRIBUTORS

Name Organization

Christoforos Kachris ICCS

Angelos Bilas FORTH

Hans Vandierendonck QUB

Tobias Becker MAX

Nikos Chrysos FORTH

Christos Kozanitis FORTH

PEER REVIEWERS

Name Organization

Christoforos Kachris ICCS

Harry Sidiropoulos ICCS

REVISION HISTORY

Version Date Author/Organization Modifications

0.1 9/05/2017 C. Kachris, ICCS Initial version

1.0 18/5/2017 C. Kachris, ICCS Final version with
contributions

4

D2.3: System architecture

Table of Contents
1� EXECUTIVE SUMMARY .. 2�

2� Related work – A survey on Hardware Accelerators for Cloud Computing 6�

2.1� Integrated frameworks for FGPAs in the Data Centers 6�

� IBM SupperVessel ... 6�

� Virtualized Hardware accelerators, University of Toronto 8�

� RC3E: Reconfigurable Cloud Computing Environment 9�

� Virtualized FPGA accelerators, University of Warwick 11�

3� VINEYARD System architecture ... 12�

3.1� VINEYARD platforms .. 15�

� Dataflow-based engines... 15�

� FPGA-based accelerated servers ... 18�

� MPSoC-based accelerated servers .. 21�

3.2� VINEYARD Virtualization and Middleware ... 23�

3.3� VINEYARD Programming framework ... 26�

� Global scheduler ... 26�

� Local scheduler ... 27�

� Application-level scheduler ... 29�

3.4� VineFrame ... 30�

3.5� VINEYARD Repository .. 33�

Table of Figures

Figure 1. Hyperscale Data Centers from IBM ... 8�

Figure 2. Toronto’s system overview for virtualized FPGAs in the data centers. 9�

Figure 3. System overview of the RC3E architecture .. 10�

5

D2.3: System architecture

Figure 4. VINEYARD overall system architecture. .. 14�

Figure 5. Next generation of the dataflow engines (MAX5) from Maxeler 17�

Figure 6. Potential floorplan of the next generation of dataflow engines that will be
developed from Maxeler in the VINEYARD project ... 17�

Figure 7. Advantages of the next generation of the dataflow engines developed by
Maxeler in the context of VINEYARD .. 18�

Figure 8. Intel Xeon + FPGA platform system overview. .. 19�

Figure 9. Bull's architecture for the FPGA-based servers .. 19�

Figure 10. Intel Xeon and FPGA in the Cloud vision, Source: Intel. 20�

Figure 11. The Zynq heterogeneous platform .. 22�

Figure 12. Software stack of the VINEYARD framework. .. 25�

Figure 13. The Vinetalk module .. 26�

Figure 4 Example of the Global scheduler when new workloads are deployed. 27�

Figure 5 Example of the Local scheduler when the weights of tenant 1 and 2 are 0.7 and
0.3 respectively. .. 28�

Figure 6 Example of Application-level scheduling with four VMs having different
scheduling policies. ... 30�

Figure 42 Brainframe Architecture .. 31�

Figure 43 Brainframe Web GUI .. 32�

Figure 44 PyNN Brainframe extensions ... 33�

Figure 14. Github site for the Vineyard central repository
(https://github.com/vineyard2020).. 35�

Figure 15. Screenshot for the draft web-based GUI of the Vineyard AppStore. The
accelerators will be shows based on the application and on the available platform 36�

Table of Tables
No table of figures entries found.

6

D2.3: System architecture

2 Related work – A survey on Hardware Accelerators
for Cloud Computing

In the last couple of years there are several reconfigurable architectures that have been
proposed for the acceleration of cloud computing applications in data centers. This
deliverable presents a thorough survey of the FPGA-based accelerators for cloud
computing that have been recently presented in the research literature.

The document first presents the frameworks that have been presented for the efficient
deployment and virtualization of the FPGA-based hardware accelerators.

2.1 Integrated frameworks for FGPAs in the Data Centers

In the last years, several efforts have been presented for the efficient deployment of
FPGAs in the Data Centers. This section presented the most promising integrated
frameworks for the efficient deployment of FPGAs in the data centers both from industry
and from academia.

 IBM SupperVessel

FPGAs in the Cloud

In 1, a general framework is proposed for integrating FPGAs into the cloud by IBM. The
framework proposes an accelerator pool (AP) that abstracts FPGA as a consumable
resource while avoiding hardware dependencies of current FPGA technologies. In the AP
abstraction, each FPGA has several pre-defined accelerators slots in which the hardware
accelerators can be mapped. By utilizing the partial reconfiguration mechanism of the
FPGAs, each slot can be considered a virtual resource that can be assigned for specific
tasks. A cloud tenant can submit either pre-defined hardware accelerators that are
hosted in central repository or can submit his own designs. However, in the latter case
the cloud owner should perform the synthesis, place and route and generate the
bitstreams for the FPGA slots.

The proposed framework supports two different methods for translating address
between the guest physical address of the virtual machines and the host physical
address. The first method copies data between the VM memory and the host buffers.
This method (VM-copy) is easy to implement but a creates a data copy overhead.
Another method, called VM-nocopy, maintains a fixed mapping between the virtual and
the host address space. This method does not introduce a data copy overhead but it

1 F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, andK. Wang, “Enabling fpgas in the
cloud,” in Proceedings of the11th ACM Conference on Computing Frontiers, ser. CF ’14. New York,
NY, USA: ACM, 2014, pp. 3:1–3:10.

7

D2.3: System architecture

requires several modifications to the host OS to reserve large blocks of physic memory
and modifications to the memory allocation methods of VM.

A prototype of the framework is implemented on an x86-based Linux-KVM environment
with attached FPGAs and deployed in a modified OpenStack cloud environment. Four
different accelerators are used for prototyping: Encryption (AES), Hashing (SHA), Stereo
matching and Matrix-Vector Multiply. The performance evaluation shows that proposed
framework allows the efficient utilization of the FPGA resources by the cloud tenants
with less than 4 microseconds latency overhead of the visualization.

HyperScale Data Centers

A similar framework is also proposed by IBM Zurich that allows cloud users to combine
multiple FPGAs in the programmable fabric2. This allows cloud operators to offer an FPGA
to users in a similar way as a standard server. In the proposed framework, multiple user
applications can be hosted on a single physical FPGA, somehow similar to multiple VMs
running on the same hypervisor. Each user can get a partition of the entire user logic
and uses it to implement its own applications. This partitioning is achieved by utilizing
partial reconfiguration. With partial reconfiguration, it is possible to dynamically
reconfigure a portion of the FPGA while the rest of the regions remain untouchable.

The users first decide on the required number of vFPGAs and customizes them using
their own custom hardware accelerators. The user can then define its fabric topology by
connecting those customized vFPGAs. When a request from a cloud user arrives, the
accelerator scheduler searches the FPGA pool to find a user logic resource that matches
the vFPGA request. When the scheduler matches the request with the required FPGA
then the interface for access to the vFPGA is offered to the user. Finally, the user rents
the defined virtualized fabric from the IaaS vendor.

The proposed architecture has been integrated into the OpenStack framework and allows
the renting of the FPGA resources on the cloud. The same architecture also allows the
possibility to distribute their applications on a large number of FPGAs through an FPGA
fabric. The integrated framework with multiple FPGAs is compared with a typical data
center based on commodity processors. It is shown that if each system is based on 2048
module the FPGA-based system can provide 958 TFLOPS compared with the 442 TFLOPS
offered by the commodity processors.

2 J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling fpgas in hyperscale data
centers,” in 2015 IEEE International Conference on Cloud and Big Data Computing (CBDCom
2015), May 2015.

8

D2.3: System architecture

Figure 1. Hyperscale Data Centers from IBM

 Virtualized Hardware accelerators, University of Toronto

In 3, a novel approach for integrating virtualized FPGA-based hardware resources into
cloud computing systems with minimal overhead. The proposed framework allows cloud
users to load and utilize hardware accelerators across multiple FPGAs using the same
methods as the utilization of Virtual Machines. The reconfigurable resources of the FPGA
are offered to the users as a generic cloud resources through OpenStack.

An agent is introduced in this framework that implements the resource management of
the OpenStack. The proposed framework splits the FPGA into several reconfigurable
regions, each of which is managed a s single resource. Therefore, instead of a single

3 S. Byma, J. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow, “FPGAs in the cloud: Booting
virtualized hardware accelerators with open-stack,” in Field-Programmable Custom Computing
Machines (FCCM), 2014 IEEE 22nd Annual International Symposium on, May 2014, pp. 109–116.

9

D2.3: System architecture

FPGA bitstream, a collection of partial reconfigurable bitstreams corresponding to the
user hardware is passed to the agent. Again, as in the case of the IBM, the cloud provider
must generate the partial bitstream for each accelerator and for each partially
reconfigurable slot since the current technology requires specific bitstreams for each
region of the FPGA.

The proposed system can set up and tear down virtual accelerators in 2.6 on average.
The static virtualization hardware on the physical FPGA has a minimum overhead (only
three clock cycles). The proposed system is implemented and evaluated in a NetFPGA-
10 platform. The prototype system implemented four virtual reconfigurable modules on
one device.

Figure 2. Toronto’s system overview for virtualized FPGAs in the data centers.

 RC3E: Reconfigurable Cloud Computing Environment

In 4, a cloud hypervisor is proposed by Technical University of Dresden that integrates
virtualized FPGA-based hardware accelerators into the cloud environment. The
hypervisor allows users to implement and execute their own hardware designs on virtual
FPGAs. The hypervisor has access to a database containing all physical and virtual FPGA
devices in the cloud system and their allocation status. Each device is assigned to its
physical host system (node).

4 O. Knodel and R. G. Spallek, “RC3E: provision and management of reconfigurable hardware
accelerators in a cloud environment,” in 2nd International Workshop on FPGAs for Software
Programmers, 2015

10

D2.3: System architecture

The user can allocate a complete physical FPGA, which has to be marked separately in
the device database or can allocate portion of the vFPGA. In the case of vFPGA allocation,
the configuration is performed by utilizing partial reconfiguration (PR). The proposed
architecture included also a Reconfigurable Cloud Computing Framework (RC2F), that is
used for the realizing the vFPGA concept and allows integration of user cores. The main
part of the RC2F framework consists of a controller managing the configuration and the
user cores as well as the monitoring of status information.

The proposed framework supports the required security by protecting the device files
using access rights. This additional virtualization layer allows concurrent users to interact
with their allocated devices without influencing each other. The proposed framework is
prototyped using a matrix multiplication applications. The matrix multiplication offers
both high amounts of data and computational complexity. The host application starts
individual parallel user threads sending matrices to the cores, measures runtime and
calculates the throughput.

Figure 3. System overview of the RC3E architecture

11

D2.3: System architecture

 Virtualized FPGA accelerators, University of Warwick

In 5, a novel framework is presented that integrates reconfigurable accelerators in a
standard server with virtualized resource management and communication. The
proposed framework integrates a PCIe based FPGA board into a standard data center
server. The FPGA is partitioned into separate accelerator slots. Accelerator functions are
either stored in a library on the host machine as partial bitstreams or can be uploaded
by the user.

Each physical FPGA is divided into multiple partially reconfigurable regions (PRRs), which
act as virtual FPGAs (vFPGAs) for hosting accelerators. vFPGAs are interfaced with the
host FPGA’s PCIe and DRAM physical interfaces for communication and data storage.
The logic to manage these physical interfaces is implemented in the FPGA static logic. A
vFPGA can be configured with a compatible partial bitstream to implement a virtual FPGA
accelerator (vFA). A vFPGA can host multiple vFAs. %To enable portability and simplify
vFA design, the vFPGAs all have a standard interface: a single AXI4-Stream interface to
the PCIe core and another AXI4-Stream interface to external DRAM.

In this framework, a hypervisor is implemented for the configuration and the scheduling
of the user logic in the FPGA resources. When an accelerator is to be configured in the
FPGA, the hypervisor decides on the optimal partial reconfiguration regions (PRRs) to
host it and initiates reconfiguration. The hypervisor also maintains a list of the available
PRRs and configured accelerators to avoid unnecessary reconfiguration when a required
accelerator is already present in the FPGA and not in use. As a use-case study, it has
been implemented a map-reduce accelerator for word counting, which finds the number
of occurrences of a specified word in a large data set, useful in data mining applications.
%In this use-case 8 mappers have been implemented in the proposed framework in a
VC709 board consuming only 24W.

The virtualized FPGA implementation surpasses the software only computational
efficiency once the FPGA is used over 12% of the time.

5 S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accelerators for efficient cloud
computing,” in 7th IEEE International Conference on Cloud Computing Technology and Science,
CloudCom 2015, Vancouver, BC, Canada, November 30 - Dec. 3, 2015, 2015, pp. 430–435.

12

D2.3: System architecture

3 VINEYARD System architecture
The VINEYARD project is developing novel servers coupled with FPGA accelerators and
programmable dataflow engines and that can be customized based on the data-centre’s
application requirements. These programmable FPGA accelerators and dataflow engines
will be used not only to increase the performance of servers but also to reduce the
energy consumption in data centres.

Furthermore, VINEYARD is also developing a programming framework that will hide the
complexity of programming heterogeneous systems while at the same time providing
the optimized performance of customized and heterogeneous architectures. VINEYARD
is also developing a new programming framework that seamlessly leverage workload-
specific accelerators based on the application requirements. In this suite, the user works
with familiar programming frameworks (i.e. Spark) while a run-time manager selects
appropriate accelerators based on application requirements such as execution time and
power consumption.

This section provides the overall system architecture of the VINEYARD framework and
the interfaces between the modules.

Figure 4 depicts the high-level overview of the VINEYARD platform. Applications that are
targeting heterogeneous data centers using traditional servers or micro-servers are
programmed using traditional data center frameworks, such as Spark, or more
application specific frameworks such as the PyNN framework that is used for neural
networks. In these applications, VINEYARD will provide the required APIs that will enable
the utilization of the heterogeneous infrastructures without any other modifications in
the sources codes.

However, some of the tasks are common across several applications such as sorting of
data, key/value processing, encryption, compression, pattern matching, etc. and are
extremely computationally intensive. These tasks can be implemented in hardware as
customized intellectual-property (IP) accelerators that can achieve much higher
performance with lower power consumption. These hardware accelerators are stored in
an IP repository (VineStore) that interface with the VINEYARD resource manager and
scheduler. For each application there are several version of the accelerators based on
the available platform (FPGA, DFE, Xeon Phi, MPSoC).

The resource manager allocates resources from the heterogenous platform and dispatch
the jobs to these nodes based on the application requirements. The resource manager
communicates with the Maxeler Orchestrator and the FPGA/MPSoC orchestrator that
keep the information of the status of these accelerators. The Resource manager also
contains the IP Library controller that is used to fetch and dispatch the right hardware
accelerator from the IP library based on the available resources (FPGA, DFE, Phi, or
MPSoC).

Each node in the platform can host a typical high performance general purpose
processor, a dataflow engine, an FPGA-based server or an MPSoC-based server. The

13

D2.3: System architecture

specifications and the details for each platform that is used and the VINEYARD
framework are described in detail in the following sections. The Software stack of each
node contains the VMs that are running on the processor, the Local scheduler that
dispatches the job to the local accelerators, the VineTalk that allows the virtualization of
the underlying hardware resources, and the VineController that serializes the jobs to the
hardware resources. VineController communicates with the accelerator’ drivers that are
based on the accelerators’ vendors.

On top of the VINEYARD resource manager, a web-based GUI, called VineFrame, can be
used to allow the control and the utilization of the available resources in an easy-to-use
graphical interface. For example, the VineFrame can be customized to the applications
for each heterogeneous platform (BrainFrame allows the utilization of the Pynn
framework in the VINEYTARD heterogenous resources).

Each section, in this document describes in more detail the building blocks of the
VINEYARD platform and the VINEYARD framework.

14

D2.3: System architecture

Figure 4. VINEYARD overall system architecture.

