
A novel framework for the Seamless integration of
FPGA accelerators with Big Data analytics
Frameworks in Heterogeneous data centers

Ioannis Stamelos, Elias Koromilas, Christoforos Kachris and Dimitrios Soudris
Institute of Communication and Computer Systems (ICCS)

National Technical University of Athens
Athens, Greece

Abstract—To face the increased network traffic in the cloud,
data center operators have started adopting an heterogeneous
approach in their infrastructures. Heterogeneous infrastructures,
e.g. based on FPGAs, can provide higher performance and
better energy-efficiency compared to the contemporary proces-
sors. However, FPGAs lack of an easy-to-use framework for the
efficient deployment from high-level programming frameworks.
In this paper, we present a novel framework that allows the
seamless integration of FPGAs from high-level programming
languages, like Java and Scala. The proposed approach provides
all the required APIs for the utilization of FPGAs from these
languages. The proposed scheme has been mapped on Amazon
AWS f1 infrastructure and a performance evaluation is presented
for two widely used machine learning algorithms.

Index Terms—heterogeneous computing, reconfigurable com-
puting, FPGA, data center, accelerator, machine learning.

I. INTRODUCTION

Emerging applications in cloud computing, IoT and big
data analytics have created the need for more powerful data
centers that can sustain the huge amounts of the data that
are generated by these applications. To face the exponential
increase of this data traffic, data centers need to adopt more
efficient architectures and solutions that will be able to face
the increased traffic without consuming excessive amounts of
power. Until recently, data center operators were relying on
the scaling of the data centers by the utilization of more
commodity server processors as most of the workload can
be parallelized efficiently. However, this approach increases
significantly the cost and the power consumption of the data
center operators.

Therefore, during the last few years, data center opera-
tors have started adopting new heterogeneous architectures
based on energy-efficient accelerators such as FPGAs and
GPUs. Hardware accelerators offer higher performance and
better energy efficiency compared to the typical server pro-
cessors. However, several constraints prevent them from the
wide adoption from data center operators and data analytics
frameworks, such as the high programming efficiency, the
lack of a transparent interface, the low resource-utilization
in the infrastructure, as well as the limited virtualization and
isolation. Several efforts have been performed to increase the
programming efficiency of the accelerators, such as HLS and
OpenCL languages. Nevertheless, one of the main barrier for

the widespread adoption of the FPGAs in the data centers is
the lack of an easy to use interface that will allow the commu-
nication with the processor without significant programming
effort.

In this work we present a novel scheme that allows the
seamless and efficient utilization of hardware accelerators
from high-level programming frameworks, like Python, Java
and C++ based ones. The proposed scheme provides all
the required APIs for the tight integration of the hardware
accelerators with such programming frameworks, thus en-
abling their effortless deployment. The proposed framework
has been evaluated in the emerging FPGA-as-a-service (Faas)
platforms that allow the utilization of the FPGAs in the cloud.
Specifically, the proposed framework has been evaluated in
the Amazon AWS f1 platform for two widely used machine
learning techniques.

Specifically, the main contributions on this paper are the
following:

• An integrated framework for the effortless deployment of
FPGAs from high-level programming frameworks.

• Transparent APIs for the utilization of FPGAs from Java,
Scala and Python.

• Efficient mapping on Cloud FPGAs based on the Amazon
AWS f1 platform.

• Performance evaluation on two widely-used machine
learning algorithms.

In Section II, we describe the related work in the domain of
programming frameworks for the efficient deployment of FP-
GAs in heterogeneous data centers. In Section III, we describe
the integrated framework for the transparent use of FPGAs
from high-level programming frameworks. In Section IV, we
describe the efficient mapping on the FPGAs hosted in the
Amazon AWS and in Section V we present the performance
evaluation of the proposed framework on two widely-used
machine learning techniques, that have been implemented and
mapped on the Amazon FPGAs.

II. RELATED WORK

The use of heterogeneous systems comes at a significant
cost: the increase in programming complexity. To overcome
this problem, new programing frameworks, that hide the
complexity of the heterogeneous systems without affecting the



overall system performance, must be developed. The program-
ming of the FPGAs can be overcome by using High Level
Languages such as OpenCL or C [1][2][3][4]. Therefore, in
the last years, there are several hardware accelerators that have
been proposed that targeting cloud computing applications for
data centers [5]. However, there are still several issues that
need to be resolved on deploying the FPGAs in the data
centers. For example, the main issues are the virtualization and
the partitioning of the hardware resources, the configuration of
the FPGAs, and the scheduling of the hardware accelerators,
based on the applications requirements. In the last couple of
years, there are several research efforts towards an efficient
framework for the deployment of the FPGAs in the data
centers.

A. FPGAs in the Cloud, IBM

In [6], a general framework is proposed for integrating
FPGAs into the cloud by IBM. The framework proposes an
accelerator pool (AP) that abstracts FPGA as a consumable
resource while avoiding hardware dependencies of current
FPGA technologies. In the AP abstraction, each FPGA has
several pre-defined accelerators slots in which the hardware
accelerators can be mapped. By utilizing the partial reconfigu-
ration mechanism of the FPGAs, each slot can be considered a
virtual resource that can be assigned for specific tasks. A cloud
tenant can submit either pre-defined hardware accelerators that
are hosted in central repository or can submit his own designs.
However, in the latter case the cloud owner should perform
the synthesis, place and route and generate the bitstreams for
the FPGA slots.

A prototype of the framework is implemented on an x86-
based Linux-KVM environment with attached FPGAs and
deployed in a modified OpenStack cloud environment. Four
different accelerators are used for prototyping: Encryption
(AES), Hashing (SHA), Stereo matching and Matrix-Vector
Multiply. The performance evaluation shows that proposed
framework allows the efficient utilization of the FPGA re-
sources by the cloud tenants with less than 4 microseconds
latency overhead of the visualization.

B. Virtualized Hardware accelerators, University of Toronto

In [7], a novel approach for integrating virtualized FPGA-
based hardware resources into cloud computing systems with
minimal overhead. The proposed framework allows cloud
users to load and utilize hardware accelerators across multiple
FPGAs using the same methods as the utilization of Virtual
Machines. The reconfigurable resources of the FPGA are
offered to the users as a generic cloud resources through
OpenStack.

An agent is introduced in this framework that implements
the resource management of the OpenStack. The proposed
framework splits the FPGA into several reconfigurable regions,
each managed as a single resource. Therefore, instead of a
single FPGA bitstream, a collection of partial reconfigurable
bitstreams corresponding to the user hardware is passed to the
agent. Again, as in the case of the IBM, the cloud provider

must generate the partial bitstream for each accelerator and for
each partially reconfigurable slot since the current technology
requires specific bitstreams for each region of the FPGA.

C. FPGAs in Hyperscale Data Centers, IBM Zurich
In [8], a framework is proposed by IBM Zurich that allows

cloud users to combine multiple FPGAs in the programmable
fabric. This allows cloud operators to offer an FPGA to
users in a similar way as a standard server. In the proposed
framework multiple user applications can be hosted on a
single physical FPGA, somehow similar to multiple VMs
running on the same hypervisor. Each user can get a partition
of the entire user logic and uses it to implement its own
applications. This partitioning is achieved by utilizing partial
reconfiguration. With partial reconfiguration it is possible to
dynamically reconfigure a portion of the FPGA while the rest
of the regions remain untouchable.

The proposed architecture has been integrated into the
OpenStack framework and allows the renting of the FPGA
resources on the cloud. The same architecture also allows the
possibility to distribute their applications on a large number
of FPGAs through an FPGA fabric. The integrated framework
with multiple FPGAs is compared with a typical data center
based on commodity processors. It is shown that if each system
is based on 2048 module the FPGA-based system can provide
958 TFLOPS compared with the 442 TFLOPS offered by the
commodity processors.

D. RC3E: Reconfigurable Cloud Computing Environment
In [9], a cloud hypervisor is proposed by Technical Univer-

sity of Dresden that integrates virtualized FPGA-based hard-
ware accelerators into the cloud environment. The hypervisor
allows users to implement and execute their own hardware
designs on virtual FPGAs. The hypervisor has access to a
database containing all physical and virtual FPGA devices
in the cloud system and their allocation status. Each device
is assigned to its physical host system (node). The user can
allocate a complete physical FPGA, which has to be marked
separately in the device database or can allocate portion of the
vFPGA. In the case of vFPGA allocation, the configuration is
performed by utilizing partial reconfiguration (PR).

The proposed framework supports the required security by
protecting the device files using access rights. This additional
virtualization layer allows concurrent users to interact with
their allocated devices without influencing each other.

E. Virtualized FPGA accelerators, University of Warwick
In [10], a novel framework is presented that integrates

reconfigurable accelerators in a standard server with virtual-
ized resource management and communication. The proposed
framework integrates a PCIe based FPGA board into a stan-
dard data center server. The FPGA is partitioned into separate
accelerator slots. Accelerator functions are either stored in a
library on the host machine as partial bitstreams or can be
uploaded by the user.

In this framework, a hypervisor is implemented for the
configuration and the scheduling of the user logic in the FPGA



resources. When an accelerator is to be configured in the
FPGA, the hypervisor decides on the optimal partial reconfig-
uration regions (PRRs) to host it and initiates reconfiguration.
The hypervisor also maintains a list of the available PRRs and
configured accelerators to avoid unnecessary reconfiguration
when a required accelerator is already present in the FPGA
and not in use.

III. TRANSPARENT UTILIZATION OF ACCELERATORS

For the transparent utilization of hardware accelerators,
we had to create a new framework that would embed all
the functionality of the old ones, serving high-level APIs in
Python, Java, Scala etc., while supporting tight communication
with the FPGA and that would be able to handle requests
for any FPGA resources, or transfers data between the host
and the FPGA memory. For evaluation purposes, the proposed
software stack was used to build an accelerated machine
learning library, that allows the seamless utilization of the
available hardware resources. In the following paragraphs, we
are going to explain the aspects of our approach based on that
use case, however any type of acceleration scenarios could be
supported.

Figure 1 shows the layers of the controllers developed
in VINEYARD for the efficient communication between the
FPGAs and the programming frameworks. The controllers that
we developed support both the Xilinx FPGA platforms (Kintex
KU3, Virtex VU9P) and the Intel (Xeon+QPI+FPGA) HARP
platforms. The latter platforms, use an extended OpenCL
API for the communication with the FPGA. Xilinx platforms
provide communication via PCIe lanes, while Intel platform
offers low-latency Shared Virtual Memory between the CPU
and the FPGA. That diversity led us into creating a new unified
software stack tailored to our needs. The core of this stack, the
FPGA driver API, is packed in a shared object library and can
be used in a transparent way, hiding all the low level details.
What is more, we implemented top level APIs in C/C++,
Java, Python and Scala that offer ease of use, while are also
easily maintained, since the middle layer, our dynamic library,
remains the same for all of the above. In other words, we
implemented a 3-tier style software stack. The top level hosts
the users’ applications, the middle layer hosts our libraries
and the lower layer hosts the OpenCL API, which is used to
actually invoke the accelerators. This 3-tier scheme has a lot
of advantages, in which we will go through in more detail at
the next paragraphs. It is important to note here that a similar
structure is used both for the Intel and the Xilinx platforms,
as is also depicted in Figure 1.

A. Application Layer

This layer hosts users’ applications. The applications can
be executed natively using C/C++, using Java or Python.
Users are able to perform a plethora of methods (i.e. train(),
test(), load() etc.) on their machine learning models. Users that
already have their applications running, do not need to change
a single line of code, except from the imported or included
library. Apart from that, changes in the lower layers of our

stack won’t affect this one. This way we are able to make
changes, optimize and add stuff or functionality to our libraries
and drivers, without affecting any top-level applications.

B. Acceleration Layer

This layer hosts the whole functionality of our framework.
The key elements of this layer are the implemented shared
library (libVine.so) and the Java/Scala library (libVine.jar).
The jar file serves as the Java/Scala API, containing all the
classes for writing an application in Java or Scala. It hosts
the implementation of each machine learning model in .java
and .scala files. Furthermore, it hosts all the functions and
methods needed to communicate with C/C++ through the
Java Native Interface (JNI), which is used as an intermediate
step for invoking an accelerator. Any JNI request from the
Java environment is handled from the shared library. It is
noteworthy that to speed up Python applications, all the
implemented classes invoke the Java virtual environment using
the pyjnius package. In other words, Python applications use
the same Java API mentioned above for the whole execution
of any class function.

The shared library combines a lot of functionality. It hosts
the C/C++ API for any top-level applications, the JNI func-
tions executing native C/C++ code and the FPGA driver that
is used to communicate with the OpenCL API.

The C/C++ API offers the same methods and functions the
Java/Scala API does. Any machine learning models can be
trained in the exact same way.

The VineNI (Vineyard Native Interface) implements three
different basic functions:

• acceleratorInit(),
• acceleratorEnd() and
• acceleratorRun()
Each one invokes the FPGA driver to perform the cor-

responding task. In more detail, acceleratorInit is used to
initialize the FPGA board, to download the bitstream and allo-
cate any buffers, acceleratorEnd is used to free any allocated
memory and acceleratorRun is used to transfer the data to and
from the FPGA board along with performing any necessary
computations. For the Intel platform two extra calls have been
implemented, mallocSVM and freeSVM, that allow the easy
manipulation of the shared memory.

The FPGA driver is consisted of two parts: A library that
wraps the OpenCL API and is used to invoke the OpenCL API
in every implemented kernel, and the driver for each kernel.

• The OpenCL Wrappers & Helper Functions library sup-
ports error handling but also can lead to 8̃0% reduction of
each accelerator driver, in terms of code lines. It is packed
as a unified library for both Vendors, and someone can
use it in both platforms only by defining the Vendor name
(#define XILINX or #define ALTERA).

• Each driver is kernel specific, meaning that any input
arguments and procedures are tightly intertwined to the
accelerator’s functionality. For example, an accelerator
may have 1 input and 1 output argument while another



C/C++

Gradients Driver

Java

Application 
Layer

#include “libVine.h”

KMeansModel KM

KM.train(…);

KM.test(…);

KM.save(…);

KM.~KMeansModel();

import com.mllib.KMeansModel;

public static void main()

KMeansModel KM = new KMeansModel(…) 

KM.train(…);

KM.test(…);

KM.save(…)

Apache Spark

C/C++ Classes

#include “KMeansModel.h”

#include “libVine.h”

KMeansModel::KMeansModel(…)

void KMeansModel::load(…)

void KMeansModel::terst()

void KMeansModel::train(…)

void KMeansModel::save(…)

JNI functions

JNIEXPORT jlong JNICALL

Java_com_mllib_VINENI_accelerator_Init

JNIEXPORT void JNICALL

Java_com_mllib_VINENI_accelerator_End

JNIEXPORT void JNICALL

Java_com_mllib_VINENI_accelerator_Run

VINEYARD
Libraries 

Layer

FPGA Drivers

Centroids Driver

OpenCL Wrappers & Helper Functions

OpenCL & 
FPGA Layer

Xilinx extensions Intel extensions

Khronos OpenCL API

FPGA

Gradients kernel Centroids kernel

libVine.jar (Java API)

package com.mllib;

public class KMeansModel{

public KMeansModel()

public void load(…)

public void test(…)

public void train(…)

public void save(…)

libVine.so (C++ API, FPGA driver API, JNI API)

…

Fig. 1. Software stack for the Seamless Integration of FPGA accelerators.

may have a lot more or even different types of arguments
etc.

C. OpenCL - FPGA layer

The bottom layer, that serves as the FPGA runtime, is con-
sisted of the OpenCL library that is provided by each Vendor
and contains Vendor-specific extensions, complementary to
Khronos OpenCL function calls. This layer has remained un-
changed as it hosts the primitive elements for communicating
with the FPGA board through the PCIe or the QPI interfaces.

IV. HARDWARE ACCELERATORS - USE CASES

To begin with, Amazon Web Services was the first ma-
jor cloud service provider that started deploying FPGAs in
its cloud platform. Amazon EC2 f1 instances are compute

instances that contain Xilinx FPGA boards, connected on
PCIe slots, allowing users to program them and accelerate
their applications. Amazon has built a formidable position in
Infrastructure-as-a-Service (IaaS) with Amazon Web Services
Elastic Compute Cloud (AWS EC2), and it is hoping to extend
that position to applications that benefit from acceleration
using GPUs and FPGAs. FPGAs are relatively difficult to
program, and the cloud leader is laying the foundation to
simplify FPGA adoption by creating a marketplace for accel-
erated applications built on Xilinx FPGAs. Other data center
operators Baidu and Tencent also have adopted Xilinx FPGAs
as a service this year. AWS is relying on OpenCL FPGA
programming to reach more developers in future, although
this still requires a lot of expertise and isnt necessarily a



Host

PCIe

FPGA

Global Memory

512 bits
@ 300 MHz

DDR Bank0

512 bits
@ 300 MHz

…

data
weights /
centroids

Kernel0

256

256 256

gradients /
count_sums

chunk
Size

DDR Bank3

…

data
weights /
centroids

Kernel3

256

256 256

gradients /
count_sums

chunk
Size

Fig. 2. Amazon f1 Memory Model and Accelerators’ Architecture.

good match for the FPGA programming model. However,
there are several issues that prevent the widespread adoption
of the FPGAs-as-a-service concept in the cloud computing
community. Therefore, a library-based design flow is required
that will allow the wide adoption of hardware accelerators for
data analytics applications.

The machine learning algorithms that we chose to accelerate
on Amazon f1, through the proposed scheme, are Logistic
Regression and KMeans. For both of them, a proof of concept
implementation based on Zynq (ARM+FPGA) architecture
[11], allowed us to focus on the migration of specific kernels to
this real heterogeneous cloud architecture, as well as explore
more efficiently the available design space and modify the
previously implemented kernels to meet the new optimal
performance.

A. Accelerator Features

This paragraph describes the final accelerators design for
maximizing performance and throughput. At a kernel level, we
went through all the possible optimizations. At first, we put a
lot of effort into unrolling and pipelining most of the loops. By
reordering the loops and reading batches of the input dataset,
we finally managed to break any loop carried dependencies
and achieve an initiation interval of value 1 for every pipelined
loop. Further on, we optimized the kernel to global memory
data transfers by taking advantage of the 512bits bandwidth
provided by the Amazon f1 FPGA boards. In our case, both ac-
celerators have two input M AXI interfaces (data and weights
for gradients kernel and data and centroids for the centroids
one), one output M AXI interface (gradients, count sums for
gradients and centroids kernel respectively) and an AXI lite
input port (chunkSize) for setting the number of given data.

After extensive profiling and trying to balance the factor of
availably used FPGA resources and performance gains, we
finally set the bandwidth of every M AXI interface to 256bits.
This way every M AXI interface is able to transfer at the same
time eight (8) floating point numbers rather than one (1). In
addition, to maximize throughput we implemented four kernels
of the same IP in every accelerator. This was found to be a
tough procedure, since to figure out the optimal kernel number
we had to experiment with many different combinations on this
number and the number of the compute-units. Implementing
four kernels, we were able to almost fully utilize all of the
available FPGA resources and take advantage of the four (4)
DDR banks provided. Each one of the four kernels is assigned
a different DDR bank and sends or receives any data through
it. The whole architecture of the implemented accelerators is
shown in Figure 2.

TABLE I
FPGA RESOURCE UTILIZATION (%).

Amazon FPGA Image LUT LUTMem REG BRAM DSP
Logistic Regression 28.15 2.17 16.20 57.71 26.36

KMeans 27.84 2.03 20.38 76.28 46.51

Finally, as far as the specifications of each accelerator are
concerned, the gradients accelerator supports up to 10 classes
and 784 features while the centroids one supports up to 14
clusters and 784 features.

V. PERFORMANCE EVALUATION ON AMAZON AWS

For the performance evaluation of the proposed framework,
we used the exact same algorithm implementations for the
software and hardware executions. For the software execution



we used an Amazon c4.8xlarge instance which has the same
price tag (per hour) as f1.2xlarge does (∼1.6/h). Every Ama-
zon c4.8xlarge instance comes with 36 vCPUs and 60 GiB of
RAM while the f1.2xlarge instances host 8 vCPUs and 122GiB
of RAM.

An F1 vCPU is a single thread of an Intel Xeon E5-2686
v4 @ 2.3 GHz processor, while a C4 vCPU stands for a single
thread of an Intel Xeon E5-2666 v3 @ 2.9 GHz processor. To
compare the accelerated and software-only implementations,
we created two different execution scenarios.

A. Native Execution

The first one concerns a native execution of the same
application in software and hardware. The aim was to compare
a simple application implementation to the accelerated one,
without using OpenMP or any other libraries for parallel
execution. Therefore, the software execution ran on a single
CPU thread, ending up in a 1 CPU thread to 1 FPGA accel-
erator comparison. This way, the rest of the c4s CPU threads
(35) remained idle, while on the f1 all of the eight threads
remained idle since the CPU intensive parts were executed
on the FPGA board. Figure 3 depicts the kernel execution
time for both Logistic Regression and KMeans algorithms in
software (written in C++, Java and Scala) normalized to the
hardware execution using the Amazon vu9p FPGA. Results
show a 19.6x speedup compared to the software execution for
the Logistic Regression algorithm and a 21.35x speedup for
the KMeans algorithm.

Logistic Regression KMeans

19.59
21.35

31.28

22.68

30.84

22.79

C++ Java Scala

Fig. 3. Native Execution Speedup.

B. Spark Standalone Execution

To take advantage of all the c4s CPU threads, we ran
the aforementioned algorithms on a Spark Standalone cluster.
For the software execution we again used a c4 Amazon
instance. Spark framework was launched with 36 workers,
therefore using all the available CPU threads. The memory
of each worker was set accordingly in order to also use all
of the available DRAM memory. As far as the f1 instance is
concerned, a Spark cluster of 8 workers was launched dividing
again the amount of the available memory to each worker.
OpenCL, which is used for the invocation of the hardware
accelerator, does not support shared memory allocation for the
context, program or any other OpenCL-created structures. This

restriction do not allow us to access the context from every
worker, since each one has his own virtual memory space.
To surpass this problem, we initially perform any data (RDD)
transformations partitioning the input dataset across all the
available workers. Further on, we coalesce the transformed
data to one partition and only one of the available workers
takes over the task of communicating with the FPGA board
to download the bitstream, send or receive data and free
any allocated memory. At this point there is the trade-of
between underusing the available f1 resources and being able
to accelerate our applications. Figure 4 depicts the execution
times of Logistic Regression and KMeans algorithms in soft-
ware and hardware. Results prove a 2.3x speedup compared
to the hardware execution for the Logistic Regression and
a 2.5x lower execution time for the KMeans accelerated
implementation.

Logistic Regression KMeans

1 1

2.3
2.5

f1.2xlarge c4.8xlarge

Fig. 4. Spark Standalone Speedup.

VI. CONCLUSION

Hardware accelerators can improve significantly the perfor-
mance of machine learning applications. However, currently
data analytics frameworks like Spark do not support the trans-
parent utilization of such acceleration modules. In this study,
we demonstrate a novel scheme for the seamless utilization of
hardware accelerators in high level programming frameworks,
like Spark, in Amazon AWS.

For the evaluation we have implemented two hardware
accelerators, one for Logistic Regression and one for KMeans,
and we have efficiently integrated it with Spark, while we
have also packed them in a native library. The results show
that the proposed scheme can be used in high performance
systems to reduce up to 2.5x the execution time as well as the
Amazon infrastructure operating cost. The results also show
that the proposed framework can be utilized to support any
kind of hardware accelerators in order to speedup the execution
time of computational intensive machine learning applications,
and prove that hardware acceleration and thus SW/HW co-
design is in fact a valid solution when software acceleration
techniques meet their limits.

As Future Work, in order to solve the OpenCL shared
memory restriction and to be able to efficiently manipulate
the available FPGA resources, an FPGA Manager capable
of handling accelerator requests in a Client-Server scheme



could be implemented. This architecture would also give us
the ability to perform also better processing and scheduling of
such requests, improving in that way both the make-span and
the throughput of the system.

ACKNOWLEDGMENT

The authors are sincerely grateful to the anonymous review-
ers for their valuable comments. This work was supported
by the VINEYARD project, which has received funding from
the European Unions Horizon 2020 research and innovation
programme under grant agreement No 687628 - VINEYARD:
Versatile Integrated Heterogeneous Accelerator-based Data
Centers.

REFERENCES

[1] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. A. Najjar. High-level language tools for reconfigurable computing.
Proceedings of the IEEE, 103(3):390–408, March 2015.

[2] David Bacon, Rodric Rabbah, and Sunil Shukla. Fpga programming for
the masses. Queue, 11(2):40:40–40:52, February 2013.

[3] Oren Segal, Philip Colangelo, Nasibeh Nasiri, Zhuo Qian, and Martin
Margala. Sparkcl: A unified programming framework for accelerators
on heterogeneous clusters. CoRR, abs/1505.01120, 2015.

[4] O. Segal, M. Margala, S. R. Chalamalasetti, and M. Wright. High
level programming framework for fpgas in the data center. In Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, pages 1–4, Sept 2014.

[5] Christoforos Kachris and Dimitrios Soudris. A survey on reconfigurable
accelerators for cloud computing. In Field Programmable Logic and
Applications (FPL), 2016 26th International Conference on, pages 1–
10. IEEE, 2016.

[6] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao
Chang, and Kun Wang. Enabling fpgas in the cloud. In Proceedings
of the 11th ACM Conference on Computing Frontiers, CF ’14, pages
3:1–3:10, New York, NY, USA, 2014. ACM.

[7] S. Byma, J.G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow.
Fpgas in the cloud: Booting virtualized hardware accelerators with open-
stack. In Field-Programmable Custom Computing Machines (FCCM),
2014 IEEE 22nd Annual International Symposium on, pages 109–116,
May 2014.

[8] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas
Herkersdorf. Enabling fpgas in hyperscale data centers. In 2015 IEEE
International Conference on Cloud and Big Data Computing (CBDCom
2015), May 2015.

[9] Oliver Knodel and Rainer G. Spallek. RC3E: provision and management
of reconfigurable hardware accelerators in a cloud environment. In 2nd
International Workshop on FPGAs for Software Programmers, 2015.

[10] Suhaib A. Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtual-
ized FPGA accelerators for efficient cloud computing. In 7th IEEE
International Conference on Cloud Computing Technology and Science,
CloudCom 2015, Vancouver, BC, Canada, November 30 - Dec. 3, 2015,
pages 430–435, 2015.

[11] C. Kachris, E. Koromilas, I. Stamelos, and D. Soudris. Spynq:
Acceleration of machine learning applications over spark on pynq.
In 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS), July 2017.


