
Efficient hardware acceleration of
recommendation engines: a use case on

collaborative filtering

Konstantinos Katsantonis, Christoforos Kachris, and Dimitrios Soudris

1 National Technical University of Athens (NTUA), Athens, Greece,
2 Institute of Computer and Communications Systems (ICCS), Greece

Abstract. Recommendation engines are widely used in order to pre-
dict the rating that a user would give to an item based on the user’s past
behavior. Modern recommendation engines are based on computational
intensive algorithms like collaborative filtering that needs to process huge
sparse matrices in order to provide efficient results. This paper presents
a novel scheme for the acceleration of Alternating Least Squares-based
(ALS) collaborative filtering for recommendation engines that can be
used to speedup significantly the processing time and also reduce the
energy consumption of computing platforms. The proposed scheme is
implemented in reconfigurable logic and is mapped to the Pynq platform
that is based on an all-programmable MPSoC Zynq system. The hard-
ware acceleration is integrated with the Spark framework and evaluated
on real benchmarks from movielens. The performance evaluation shows
that the proposed scheme can achieve up to 120x kernel speedup and up
to 12x energy-efficiency compared to the embedded ARM processor of
Zynq.

Keywords: reconfigurable logic, recommendation systems, cloud com-
puting

1 Introduction

The need for large scale and energy efficient computation has evolved to unprece-
dented levels. Huge amounts of data are being gathered from multiple sources
[1] such as social networks, IoT devices and web pages in general, while simulta-
neously we are deploying more sophisticated algorithms to process this data in
order to perform various AI and machine-learning tasks. Big organizations offer-
ing such services, like Google, Amazon and Microsoft are constantly expanding
their data-center infrastructures to meet the processing demands. However tra-
ditional semiconductor technologies are reaching their physical limits [2] and the
Moore’s Law seems unable to back up this challenge. Moreover energy consump-
tion is becoming the dominant limiting factor in datacenters. In order to meet
the needs for huge processing power and energy efficiency, novel architectures
based on reconfigurable logic are adopted by data center operators.



This paper presents a novel scheme for the acceleration on recommendation
engines that are based on collaborative filtering. The proposed system is evalu-
ated using the Pynq boards built around the Zynq-7000 platforms. Zynq is an
Heterogeneous Soc that incorporates both an ARM CPU and a FPGA [3].

The main contributions of this paper are the following:

– Design Space Exploration of a Recommendation System using Matrix Fac-
torization trained by Alternating Least Squares.

– Efficient mapping in reconfigurable computing using High-Level Synthesis
(HLS).

– Performance and power evaluation.
– Creation of a python interface for the accelerator.
– integration with the Spark framework through python.

2 Related Work

On 2009 D. Yang et al. presented an FPGA Implementation for Solving Least
Square Problem [11]. However, at the time the urge for low energy consumption
was not as intense as today and as a result there was no reference to power
metrics. Moreover the design took place on a an FPGA and not on SoC embedded
heterogeneous platform.

In this paper we present a novel approach focusing both on performance and
power consumption of the recently released Zynq device, for alternating least
squares learning algorithm which is an extension of least squares algorithm, with
the second one having somewhat more applications in modern computing. Our
prototype cluster is almost identical with the one presented here [14] and here
[15], except from the fact that we used the Pynq Boards instead of ZedBoards
and Apache Spark, instead of Hadoop. Furthermore in our case the bitstream
can be downloaded at runtime, as long as it is stored in the boards SD card,
using a module that comes with Pynq’s image. A very nice proposal concerning
the integration of FPGAs in data centers is presented here [16], but emphasis
is given in the aspect of partial reconfiguration which is not considered at all
in this paper. A more related work to this paper is [12] on Neighborhood based
Collaborative Filtering on Zynq (2015), however in this paper we also present
an attempt to integrate the kernel with a high level language on cluster running
Apache Spark. Work related to accelerators running in parallel on a cluster has
taken place in from Muhuan Huang at UCLA [13].

3 Algorithm Overview

For this study we developed a recommendation system in software, which uses
collaborative filtering with matrix factorization and is trained with the Alter-
nating Least Squares (ALS) learning algorithm. Without Loss of Generality we
assume that the items to be recommended are movies.



3.1 Brief Algorithm Description

Let R = [rij ]nu×nm denote the input user-movie matrix, where each element rij
represents the rating score of user i to movie j with each value being either a
real number or missing, nm and nu denotes the number of movies and number
of users respectively. Our task is to fill the missing values of R with values as
close to reality as possible, based on the known values.

Both movies and users are modeled with a feature vector and each rating
(either known or unknown) as the inner product of the corresponding movie
and user Vector. Let U = [ui] be the user feature matrix where ui ∈ Rnf

for i = 1...nu, and let M = [mj ] be the movie feature matrix , where mj ∈
Rnf for all j = 1...nm. The dimension of the feature space in nf , it is the
number of features/latent-factors the algorithm will have to learn for each user
and each movie. Determining the best possible nf as well as some other model
regularization parameters ,which will be presented later on, can be achieved by
cross-validation or other popular techniques used in machine learning, but at
this study we won’t focus at all on the methods used to find the optimal values
for the mentioned variables.

Ideally we would like to achieve rij =< ui,mj > ∀i, j. In practice however
we try to minimize a loss function of U and M to obtain them. In this algorithm
we examined the Mean-Squared-Error however our purpose is not to tune the
model-parameters as best as possible to minimize RMSE but to accelerate the
algorithm. The loss function due to a single rating is as follows.

L2(r, u,m) = (r− < u,m >)2 (1)

Then the total loss function,given the whole matrices U,M can be defined as
the average loss on all known ratings

Ltotal(R,U,M) =
1

n

∑
(i,j)∈I

L2(rij , ui,mj) (2)

where I is the index set of all known ratings and n is the number of elements
inside I.

Our algorithm’s task is as follows

(U,M) = min(U,M)L
total(R,U,M)

where U ∈ Rnu×nf and M ∈ Rnm×nf .
Hence, we have totally (nu + nm) × nf free parameters that are used for the
learning process. We avoid over-fitting by using Ttkhonov regularization [5] term
to the total cost function.

The algorithm we used for acceleration [5] can be summarized in the following
steps

1. Initialize matrix M by assigning small random numbers to the movie vector
elements.



Table 1: Execution time as deducted by 10 iterations on the movielens-1m dataset.

Operation Execution Time(%)

Matrix Op 92.35
Cholesky 7.02
Rest 1.63

2. Fix M, Solve U by minimizing the objective function (the sum of squared
errors);

3. Fix U, solve M by minimizing the objective function similarly;
4. Repeat Steps 2 and 3 until a stopping criterion is satisfied.

Let Ii denote the set of movies j user i has rated and Ij denote the users
that have rated movie j.(card(Ii) = nui

and card(Ij) = nuj
)

ui = A−1i Vi∀i (3)

where Ai = MIiM
T
Ii

+λnui
E, Vi = MIiR(i, Ii) and E is the nf ×nf identity

matrix. Once again MIi is the sub-matrix of M where the columns j ∈ Ii are
chosen, and R(i, Ii) is the i’th row of R from which only the columns j ∈ Ii are
chosen.
Similarly, in case we want to update the elements of M each mj is calculated by
using the feature vectors of the users who have rated the corresponding movie j
and of course the ratings themselves:

mj = A−1j Vj ,∀j (4)

in this case, Aj = UIjU
T
Ij

+ λnmjE and Vj = UIjR(Ij , j). UIj is the sub-

matrix U where only rows i ∈ Ij are chosen, and R(Ij , j) is the sub-vector of R
where only rows i ∈ Ij of the j’th column are chosen.

4 Profiling Execution Time

The first step of our design methodology was to profile the algorithm in order
to indicate the most computational intensive part. We executed the algorithm
with input movielens 1m [9] and number of features ranging form 10 to 100 with
a step of 10, with ten iterations executed for each latent factor we found out
that the execution profile converges approximately to that presented in Table 1.
With the matrix operations occupying approximately 92% of the execution time
we proceeded with the design of such a kernel.

5 Prototyping on Zedboard using SDSoC

5.1 Data Mapping

To achieve an efficient hardware implementation, the memory access pattern
was studied, in order to map input and output data in a way that prevents



Fig. 1: Input data mapping on Brams. With this type of mapping we can fetch whole
columns or whole rows in a clock cycle.

bottlenecks. Zynq’s programming logic features dual port BRAMs meaning that
we can fetch two elements per cycle from each. Hence, we partitioned the data
in pairs of rows or columns, depending on the memory access pattern of each
calculation type.

5.2 Computational Part of the Kernel

For the implementation of the kernel, we developed two similar computational
units that work in parallel in order to simultaneously perform operations on
four matrices. Each computational unit consists of a DSP48 row that is fed with
raw input data. The DSP48 row performs multiplications in parallel and feeds
the result in a tree adder. The whole unit is pipelined in order to maximize the
throughput.

5.3 Software - Kernel interface version 1

In the first version of the kernel we used AXI4-Stream to transfer the data
between the DMAs and the hardware function. For this version we designed
the protocol’s interface directly on the accelerator. In this version a software
driver was used for sending data windows of size 20×80 to the kernel. Although
this implementation achieved great speedup against the ARM-only execution, it
had many drawbacks like the need for two-dimensional zero-padding of the input
data, and the need to transfer multiple arrays used as intermediate accumulators
for the storage of the partial results.

5.4 Software - Kernel interface version 2

In an attempt to increase the performance we used Xilinx’s IP FIFO Accelera-
tor Adapter. This IP is responsible for managing efficiently the AXI4 STREAM



Fig. 2: Abstract representation of the main computational unit. The DSP48 row is
longer in the actual implementation.

protocol exposing to the hardware kernel a simple FIFO interface. This IP re-
lieved us from the need to design our own AXI4-stream interface and increased
even more the performance, but didn’t solve the problems emerged from the first
version of the interface.

5.5 Software - Kernel interface version 3

In the final version we took advantage of the Accelerator Adapter’s programming
capabilities to boost up the performance. More specifically we configured the
adapter in a way that allows passing arrays, from software to hardware, whose
one dimension is determined at runtime from the processing system, and as a
result we reduced the amount of padding needed to the data transferred, leading
to less unnecessary operations which in turn leads to greater performance and
energy efficiency.



6 Python Integration on Pynq

To leverage the use of the hardware acceleration unit and make easy the utiliza-
tion from high-level programming framework, we developed the required APIs
that allow the transparent deployment of the accelerators. Specifically, we de-
veloped the required libraries that allow the instantiation of the kernel from
a high-level language like python, which is widely used in Machine Learning
Tasks. The whole process took place by using the Pynq Board, which is a pro-
totype board from Digilent that comes with a Linux image containing python
libraries that help designers use kernel’s from python scripts. The whole process
is described below:

1. We created a bitstream for our IP matching the new Device(PYNQ), using
Vivado.

2. Then we wrote the software Part of the algorithm in Python, using efficient
libraries (numpy, scipy).

3. Finally by using the libraries coming with the Linux image of PYNQ, we
created the appropriate software driver responsible for the software-hardware
communication.

At the final step of the mentioned process we had to perform manually the
operations that are performed by SDSOC framework automatically. The Python
Libraries are wrappers of C language that are used for the interprocess commu-
nication. This wrap is accomplished with the use of a library called cffi, which
allows python scripts to execute C code coming either precompiled either in
source-code form. This means that this integration can happen in any platform
rather than Pynq. Moreover with the use of cffi we can hide low level implemen-
tation details from the developer under python hood.

7 Apache Spark Integration

Apache Spark [6] is a framework designed for fast large-scale data processing.
Spark stores data in a structure called resilient distributed datasets (RDD) [7],
that is a read only (for ease of coherency purposes) collection of the data. Spark
data operations are scheduled in a DAG scheme. Each task consists of a series of
transformations that generate new RDDs and an action which corresponds
to the reduce step of the map-reduce programming model. Spark performs lazy
evaluation, in order to perform as much tranformations as possible in one step so
that it can achieve more efficient task scheduling. In a glance it is an improved
version of Hadoop MapReduce [8]. At the moment, Spark is one of the most
popular big-data frameworks.

On this step we made a prototype Cluster consisting of four Pynq boards in
order to run the algorithm both in parallel using Apache Spark and accelerated
using the programming logic of each PYNQ [10]. The idea is that every worker
of the cluster, each PYNQ board in our case, contains the bitstreams of the
accelerator and the Apache driver program commands the workers to configure



Fig. 3: Accelerator speedup against arm only execution. Points represent our measure-
ments for different input sizes. nf = 80

their FPGAs appropriate for the computation that is about to happen. This hap-
pens by calling a dummy map() function,before the actual computational map()
operation, whose purpose is to instruct the workers to overlay the appropriate
bitstream.

8 Performance evaluation

8.1 Kernel-only Performance Evaluation on Zedboard

The first implementation created on SDSoC framework, achieved speedup of up
to 120× for input matrices of size 12000×80, against the arm-only execution. As
the input matrix size increased, the speedup was also increased. It is important
to notice that Figure 3 refers only to the speedup of the accelerated part (kernel)
and not the speedup of the whole ALS algorithm.

8.2 ALS performance Evaluation Zedboard

Embedding the Version 3 kernel in ALS algorithm and running iterations using
the datasets movielens 1m and movielens 100k we get the speed up shown in
Table 2. Notice that the column presenting the average number of ratings per
movie/user is present, because this is a good metric indicating the average size
of the matrices that will be produced at runtime. As a result, from this metric
combined with Figure 3 and Amdahl’s law, we can estimate the anticipated
speedup for the specific dataset, this observation is actually verified by the actual
speed-up measurements which happen to be very similar to the ones anticipated.

We also compared this implementation against a software only implementa-
tion on two other platforms, an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz,



and Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz. For this comparison we used
as input the movielens 1m dataset and the result was that the implementation
on the accelerated embedded system outperformed the i7 processor by a factor
of 1.7× and the Xeon processor by a factor of 2.7×.It is important to notice that
such small datasets like movielens 1m are unable to demonstrate the kernel’s full
potential which is presented in Figure 3, because the small number of ratings
per user/movie leads to matrix operations of very limited size.

Table 2: Execution time speedup as deducted of the ALS algorithm on datasets
movielens-1m and movielens 100k with nf = 80.

Dataset Speed-up vs Arm-only average ratings per movie/user

movielens 100k 18.8× 76.2
movielens 1m 36× 205.2

8.3 Power Consumption

In Figures 4,5 we show the power consumption of the algorithm for one iteration
on two different datasets. Although the accelerated version consumes more power
momentarily in the beginning of the execution the fact that it runs for much less
duration leads to a great improvement to the Performance per Watt metric versus
the arm only execution. Specifically one iteration on movielens 100k dataset
consumed 12× less energy while an iteration on movielens 1m consumed 27× less
energy. We can notice both in performance and energy consumption evaluation
that the kernel scales very well, meaning that as the input size increases the
performance speedup and the energy savings increase too.

Table 3: Energy savings as deducted of the ALS algorithm on datasets movielens-1m
and movielens 100k.

Dataset Energy savings average ratings per movie/user

movielens 100k 12× 76.2
movielens 1m 27× 205.2

8.4 Python on Pynq

This implementation showed-up great results in performance but the speedup
achieved compared to an arm only execution was quite reduced compared to
the one achieved on the previous implementations. The reason is that a high



Fig. 4: Power consumption profiling of the system for 1m dataset (from one iteration)

Fig. 5: Power consumption profiling of the system for 100k dataset (from one iteration)

level language like python and and its corresponding libraries were not created
having in mind integration with hardware accelerators and as a result specific
data conversions are needed that consume great percent of the execution time.

8.5 Apache Spark Integration

Four Pynqs accelerated and coordinated by spark managed to run 4-5× faster
than an arm only execution. On this case there are many software parts added to
the algorithm by spark. Spark adds serialization and deserialization tasks data
broadcasts over Ethernet and more. As a result the part which is accelerated is
smaller compared to the total execution time and as a direct impact of Amdahl’s
law we expected a smaller speedup.



Table 4: Execution time speedup as deducted of the ALS algorithm with nf = 80 on
datasets movielens-1m and movielens 100k.

Dataset Speed-up of Python implementation

movielens 100k 5.8×
movielens 1m 13.8×

9 Conclusion and Future Work

In this paper we discussed the path of reconfigurable architectures as an compu-
tational alternative path, and we attempted to sum a performance and energy
evaluation of that path on embedded boards. Moreover we attempted to test
this technology with a popular scripting language like python in order to make
it more accessible and easy to use by software developers. The results are defi-
nitely promising from both power consumption and performance perspectives.
However in order to make these architectures a common case, we must expand
the library so that it contains multiple accelerators, for many computational
intensive tasks. Moreover it is great need to make these accelerators easy to use
by constructing a fine tuned and efficient python library that allowed smooth
transitions from software execution to hardware and vice versa. Except from
python, apache spark could be extended in order to natively support accelerated
execution more efficiently, by integrating specific instructions for configuring the
slave’s programming logic instead of forcing us to use ”map()” calls that don’t
have computational intentions but were just written for FPGA configuration
purposes.

Acknowledgment

This project has received funding from the European Unions Horizon 2020 re-
search and innovation programme under grant agreement No 687628 - VINE-
YARD: Versatile Integrated Heterogeneous Accelerator-based Data Centers.

References

1. PK Gupta, Director of Intel Cloud Platform Technology,Xeon+FPGA Platform for
the Data Center (2015)

2. Hadi Esmaeilzadeh,Dark Silicon and the End of Multicore Scaling, ISCA (2011)
3. Vidya Rajagopalan,Xilinx Zynq-7000 EPP An Extensible Processing Platform Fam-

ily (2011)
4. Yahuda Coren,Matrix Factorization Techniques For Recommender Systems, pub-

lisher IEEE Computer Society (2009)
5. Yunhong Zhou,Large-Scale Parallel Collaborative Filtering for the Netflix Prize

(2008)
6. Matei Zaharia,Spark: Cluster Computing with Working Sets,Proceedings of the 2nd

USENIX conference on Hot topics in cloud computing, 2010 (2012)



7. Matei Zaharia,Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing, Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation (2012)

8. Juwei Shi , Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics
, Proceedings of the 41st International Conference on Very Large Data Bases, Kohala
Coast, Hawaii (2015)

9. Xiang Ma, Chao Wang, Qi Yu, Xi Li, Xuehai Zhou, An FPGA-Based Accelerator for
Neighborhood-Based Collaborative Filtering Recommendation Algorithms, Cluster
Computing (CLUSTER), 2015 IEEE International Conference on, September, 2015

10. Christoforos Kachris, Elias Koromilas, Ioannis Stamelos, Dimitrios Soudris, Spynq:
FPGA acceleration of Spark applications in a Pynq cluster, FPGA acceleration
of Spark applications in a Pynq cluster, IEEE nternational Conference on Field-
Programmable Logic and Applications, September, 2017. Ghent Belgium

11. Depeng Yang, An FPGA Implementation for Solving Least Square Problem, IEEE
(2009)

12. Xiang Ma, An FPGA-based Accelerator for Neighborhood-based Collaborative Fil-
tering Recommendation Algorithms, Cluster Computing (CLUSTER), IEEE Inter-
national Conference (2015)

13. Muhuan Huang,Programming and Runtime Support to Blaze FPGA Accelerator
Deployment at Datacenter Scale ,SoCC Proceedings of the Seventh ACM Symposium
on Cloud Computing (2016)

14. Zhongduo Lin, Paul Chow, ZCluster: A Zynq-based Hadoop Cluster, IEEE, pp.
450-453 (2014)

15. Katayoun Neshatpour, Maria Malik, Mohammad Ali Ghodrat, Avesta Sasan, and
Houman Homayoun, Energy-Efficient Acceleration of Big Data Analytics Applica-
tions Using FPGAs, IEEE International Conference on Big Data, pp. 115-123(2015)

16. Fahmy, Suhaib A., Vipin, Kizheppatt and Shreejith, Shanker, Virtualized FPGA
accelerators for efficient cloud computing. IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), Vancouver, Canada, 30 Nov - 3
Dec pp. 430-435 (2015).


