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Abstract—Field Programmable Gate Arrays (FPGAs) offer a
low power flexible accelerator alternative due to their inherent
parallelism. Reprogrammability, although its their key feature,
it is used almost exclusively on design time due to the constrains
imposed by the modern CAD tools that require even days to run
and tens of GB of RAM. In order to effectively utilize FPGAs
on run time we propose a novel methodology and the supporting
toolflow that enable efficient mapping of multiple applications
onto heterogeneous FPGAs. With the use of a floorplanning
step, memory optimizations and custom memory allocators, we
alleviate the constrains imposed by CAD tools, and provide a
proof of concept that application mapping onto FPGAs can be
done on run time. Experimental results prove the efficiency of
the introduced solution, as we achieve application’s mapping 40 x
faster on average compared to a state-of-art approach, without
performance degradation and with 12x on average reduced
memory usage.

I. INTRODUCTION

Existing applications impose a continuously increasing
demand for processing power. This trend affects not only
scientific and industrial applications, but also consumer and
end user applications. As an outcome, a number of design
strategies and methodologies have been proposed that take
into advantage the additional flexibility offered by heteroge-
neous systems. These are usually consisting of general-purpose
CPUs and hardware accelerators. They span from thousands-
core data centres and cloud hardware infrastructures to small
embedded systems like cellphones, smart TVs, watches and
cameras.

In order to efficiently integrate on this new landscape,
FPGAs need to support fast application development and
implementation. Industry has taken steps towards faster ap-
plication development, exploring diverse solutions. Examples
of these solutions can be found in the EDA tools of leading
commercial FPGA companies, like Xilinx that has integrated
a High Level Synthesis environment in the toolflow Vivado
[1], and Intel-Altera that supports OpenCL kernels [2]. For
faster application implementation the main body of research
focuses on faster mapping algorithms and tools.
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Another approach for supporting fast application implemen-
tation relies on reconfiguring parts of the FPGA on runtime in
order to change an already implemented design or replace it
with another. This technique has been also used in commercial
FPGA platforms. Research on this topic aims usually to
identify a proper region over the target architecture, with a
sufficient amount of contiguous free hardware resources. Ad-
ditional problems are resource fragmentation and the challenge
of coherent and transparent pausing and continuing of the
applications.

As mentioned before there is a need for a dynamic envi-
ronment that supports and accelerates multiple applications.
In current commercial ( [1], [3]) and academic tool flows
(VTR [4]), there is no direct support for mapping multiple
independent design onto an FPGA. More specifically in the
academic VTR project, which is a mature widely accepted
FPGA toolflow, the only way to map multiple applications is
to merge their HDL description and execute the toolflow from
the beginning. This is inefficient, counter-intuitive and in a
real-world scenario this could only have been done once, in
the design time.

An important but often neglected part of the P&R steps
is the memory footprint of the tools. Since modern designs
and FPGAs are reaching the range of million logic cells the
main bottleneck for the execution time of the tools is the
memory usage and not the algorithms used in each step. As
an example Table I shows the memory footprint of the VPR
7.0 tool (the P&R tool of the VTR project) when mapping
designs onto a medium sized, midrange FPGA consisting
of 30,000 Logic Blocks. Its clear that memory usage can
easily become a bottleneck for execution easily overshadowing
algorithmic improvements on the tools. This is specially true
if we consider the scenario, when at runtime we need to map
multiple applications in parallel onto a single FPGA.

II. RELATED WORK

The most computational intensive task during application
implementation onto an FPGA, is the placement and routing
(P&R) step. In order to overcome this limitation researchers
have already proposed a number of solutions [5], [6], [7].
Authors in [5] have developed a parallel placer based on a
simulated annealing algorithm in order to decrease execution



TABLE I
MEMORY FOOTPRINT OF VPR 7.0 TOOL WHEN MAPPING DESIGNS ONTO A
MEDIUM SIZED FPGA.

Benchmark Memory Benchmark Memory
mkDelay-
arm_core 5.611 GB Worker32B 5.381 GB
bgm 6.019 GB mkPktMerge 5.237 GB
blob_merge 5.368 GB mkSMAdapter4B 5.251 GB
boundtop 5.281 GB or1200 5.291 GB
ch_intrinsics 5.214 GB raygentop 5.258 GB
diffeql 5.225 GB sha 5.270GB
diffeq2 5.214 GB stereovisionQ 5.484 GB
LUSPEEng 5.907 GB stereovisionl 5.498 GB
stereovision2 6.006 GB

time and incorporated this placer in Altera’s FPGA toolflow.
In [6] and [7], authors incorporate known techniques from
the Application Specific Integrated System’s (ASICs) domain
in order to reduce the placer’s execution time.

The main body of research concerning the execution time
of the application mapping is focused on the algorithmic side,
mainly of the placement step (since it is time consuming, and
greatly affects the quality of mapping) [8], [9], [10] and on
the algorithmic side of the routing step [11], [12]. Towards
fast application implementation in [13], we introduced the idea
of a VKernel, that acted as a wrapper in order to accelerate
application mapping and accommodate dynamic mapping of
multiple applications onto an FPGA.

The execution time and computational resources when map-
ping an application onto an FPGA becomes a serious headache
for designers as the designs continually increase in size. An
important work that highlights this problems is [14], where
the authors explore the gap between academic and commercial
tools. More specifically in this work multiple large benchmark
were used to test the execution time, memory consumption and
quality of solution between VTR [4] and Altera’s Quartus[3].
The results show that VTR on average needed almost 4 hours,
in some cases exceeding the 48 hours limit, and 22GB on
average memory. Altera’s Quartus[3] was significantly better,
but still needed 2 hours and 4GB of RAM on average.

Managing the memory for such intensive tasks has been
studied for a long time. Most present operating systems also
take some of the work from the dynamic memory allocators.
Sophisticated virtual memory designs, implemented in the
kernel space, make many memory decisions on the user space
easier and faster. In these environments contemporary, third-
party memory allocators cannot consistently beat the system
allocators [15]. Requiring such large amounts of memory from
modern computer systems is trivial, but the systems are not
optimized for this specific type of workload by default.

Low-level dynamic memory allocators adhere typically to a
standard group of functions defined in the C standard library,
namely malloc, realloc, calloc and free, but their implementa-
tions vary a lot. DImalloc [16] has been the reference point
for most of them, organizing memory in bins of arbitrary sizes
and putting data accordingly. This idea has been the base for
many different allocators including ptmalloc, Hoard [17] and

jemalloc [18]. Ptmalloc continues the concept of bins for
different sizes, but extends it in the field of multi-threading
applications. Hoard introduces the concept of memory blow-
up, where an application cannot properly return memory to the
system although it is not actively used by it. Finally, jemalloc
shares a similar strategy in handling multiple heaps, called
arenas, but also maintains several thread caches in order to
reduce the volume of synchronization events in multi-threaded
applications.

All these memory allocators are general purpose ones and
as such, they misuse the memory space when an application
is employed that has heavy memory requirements, but with a
specific memory pattern.

III. CONTRIBUTION

Throughout this research work we introduce a novel
methodology and the supporting tool-flow for performing
dynamic mapping of multiple applications onto an FPGA.
We consider a heterogeneous FPGA platform as a pool of
hardware resources including logic blocks, memory and DSP
blocks, where applications can be mapped as dynamic kernels
onto these resources. In order to make it feasible to map
these kernels at runtime we have significantly reduce both the
execution time and the memory footprint, by combining ag-
gressive memory optimizations with custom dynamic memory
allocators.

The key features of the proposed methodology, named Het-
JITPR, and the supporting toolflow are summarized as follows:

— Mapping of multiple application kernels onto a single
modern FPGA architecture consisting of adaptive logic
blocks, non uniform routing, DSP and RAM blocks.

— The processing requirements have been greatly reduced
through both algorithmic and memory optimizations.

— Mapping of those dynamic kernels is performed onto
the FPGA, through aggressive P&R, even under runtime
constrains.

We extended the idea presented in [13] by further reducing
computational resources and execution time. We investigated
thoroughly the memory consumption, memory usage and ex-
ecution time bottlenecks and developed optimizations dealing
with those bottlenecks. More specifically:

— We investigated the memory usage throughout the entire
tool flow and identified the most memory hungry opera-
tions.

— In the floorplanning step of our tool-flow, we have
developed through experimentation a complex heuristic
that takes into account multiple mapping variables

— We introduced optimizations in order to reduce the mem-
ory bottlenecks and experimented with custom memory
allocators to further optimize memory usage.

The remainder of this article is organized as follows. Section

2 presents the related work. Section 3 gives an overview of
our methodology for efficient kernel mapping on FPGAs and
the details of the optimizations in the introduced supporting
framework. Experimental results are discussed in Section 4.
Finally, conclusions are summarized in Section 5.



IV. PROPOSED SOLUTION
A. Overview of the proposed methodology

The introduced methodology is software supported by a
tool-flow, named Het-JITPR. Whenever a new application has
to be mapped onto the target architecture, a generic version of
its netlist is fed as input. The first step is performing a floor-
planning step targeting to determine the most suitable region
over the FPGA, where the application will be implemented,
with the introduced VKernel-Planner tool.

The application’s netlist is then placed and routed (P&R)
strictly onto the resources allocated for it. In both these steps
the tools are unaware of the rest FPGA fabric, outside the
selected region.

The proposed placer is based on a fast simulated annealing
algorithm, based on the VTR toolflow’s placer algorithm [4],
that supports also hard blocks. The placer’s execution time
has been significantly improved by reducing the number of
moves compared to the original VPR algorithm as previously
researched in [19]. Furthermore since we place the application
onto a region that is tailored specifically for this application’s
requirements, we significantly decrease the solution space of
the placement, thus achieving even faster execution times.

Apart from the placer, our framework incorporates a router
that identifies the routing segments and switches that should
be used in order to create connected paths from net sources to
net destinations for all the networks in a circuit. The routing
algorithm is based on the PathFinder negotiated congestion
algorithm [4], but it has appropriately tuned for faster execu-
tion times. This speedup of the execution time is achieved by
setting a very high cost value for initial channel overuse.

After successful P&R the VKernel’s occupied resources
are directly linked to corresponding FPGA resources. At this
step, all the necessary information for computing the partial
bitstream file for the new application is available. Whenever
an application has to be deallocated from the reconfigurable
device, we appropriately update the information about its
resources (we mark them as non-utilized).

B. Floorplanning optimizations - VKernel-Planner

The VKernel-Planner tool initially, assigns a number of
uniformly distributed seeds across the FPGA. Each seed
represents a potential area for the new application kernel.
The number of seeds, the seeds’ size, as well as the distance
between two consecutive seeds, are tuned at runtime, since
their selection is affected by the availability of hardware
resources and the performance requirements.

Each of the seeds is expanded towards = and y directions
repeatedly, with a fast variation of the flood-fill algorithm until
the seeds include sufficient amount of hardware resources for
the application’s requirements. The areas represented by each
seed, can be overlapping with each other, but they cannot
overlap with the area assigned to another previous application.

The cost of each seed’s solution evaluated by the VKernel-
Planner has three components, C, Cg and C.,, associated with
the efficiency of resource allocation.

— The overuse of resources is represented in component C.,
and it affects the total number of applications that can be
instantiated onto the target FPGA.

— ('3 component represents how close the applications are
mapped onto the FPGA, and affects the fragmentation of
reconfigurable resources.

— The regularity and the squareness of the candidate region
are represented in component C, and they affect the
quality of the application’s mapping.

Its important to state that the term Bounding Box, included
in most of the following equations is the minimum rectangle
containing a given set of blocks. It is defined as [Zin, Ymin] —
[Zmaz, Ymaz) Of the coordinates of each block in the given set.

Each cost component is calculated by the following equa-
tions:

1) Component « (Eq.1):

Rreq i
Rfree i

n
Ca = Zkl *
i=1

Ryeq i : the number of type i blocks required by the kernel

n
with Zk =1 1)
=1

Ryree i @ the number of free type i blocks inside the seed’s area

ki : a weight factor representing how critical is resource type i

Each candidate region might include more resources than
those actually required by the VKernel-Planner. In an
FPGA there are several resource types i.e. Logic blocks,
I/O pads, DSP blocks, etc., each one with different
number and physical position inside the reconfigurable
fabric. With the C, we penalize the amount of extra
resources, through the R,eq i/Rjree i term and k; is a
normalized weight depending on the type of resources
1. Extra DSP and memory blocks are penalized with the
highest k factor, lower penalty factor have the unutilized
I/O blocks and the lowest the logic blocks. In order to
better illustrate this cost, Figure 1(a), shows an example
of two candidate regions for the application kernel where
Co1>0C4 11

2) Component /5 (Eq.2):

Free blocks at Utilized Bounding Box

Cg=1-
s Total blocks at Utilized Bounding Box

(@)

By Utilized Bounding Box we denote the Bounding
Box that contains both the candidate region for the new
application kernel and every already deployed kernels. C'g
represents how close the new application kernel will be
deployed to the previous kernels. This affects the quality
of mapping for future designs since it introduces high
irregularity on future kernel’s shape. In order to better
illustrate this cost, Figure 1(b), shows an example of two
candidate regions with their respective Utilized Bounding
Boxes where Cg 1 > Cj 1 and the grey area is reserved
from already deployed kernels.
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Fig. 1. Example of the three cost components used to evaluate solutions on
VKernel-Planner. (a)Co Eq 1 where C, 1 > C, 11, (b) Cg Eq 2 where
Cﬂ 1> C/B 11> (© C»y Eq 3 where C"/ 7> C’Y 77 and C’Y > C',y III-

3) Component ~y (Eq.3):

3)

|nz — ny|) ( Free blocks at SBB )
nr +ny Total blocks at SBB
nx : the width of the seed’s area

C:(l

ny : the height of the seed’s area
SBB : Seed Bounding Box

By Seed Bounding Box we denote the Bounding Box

that contains the blocks of the seed’s area. C., represents

the squareness (1 — [nx — ny|/(nx + ny)) and the reg-

ulariy (Ficeiocts ot Sccd Boundiag Bor) of the soed's
area. High irregular shapes from our experience affect in
a negative way the quality of P&R of an application,
thus we prefer the region reserved for a kernel to be
regular. This concept is illustrated in figure 1(c) where
Cyr > Cyqr, Cy1 > Cy 7 and the grey area is
reserved from already deployed kernels.

After calculating C,Cg and C, for each seed, VKernel-
Planner keeps the solutions (seeds) that form the pareto front in
the three dimensional space created by these cost components.
From the pool of these seeds VKernel-Planner selects one
depending which aspect of cost we want to optimize, by user
defined factors.

The runtime overhead of the VKernel-Planner is negligible
since its complexity is O(n x \/2), where n denotes the
number of slices found to the target architecture and m is the
number of slices required for application implementation.

C. Memory Optimizations

1) Application-level optimizations : The user input to our
toolflow of the application that we map onto the FPGA

is a .net, netlist file. This file represents hierarchically the
input design expressed in the complex blocks that our FPGA
architecture consists of, Logic Blocks, I/O pads, Memory and
DSP units. A Logic Block in the .net file will contain the
name of the block, all the input and output connections, and
the internal architecture concerning how the LUTs, the latches,
the flip-flops, etc. are interconnected in the block. Naturally
this corresponds to the architecture of the target FPGA.

In profiling of VPR 7.0 (the P&R tool of the VTR frame-
work [4]) we found out that a significant amount of memory is
spent on the internal representation of these complex blocks.
An independent routing graph describes this interconnection in
each block. The memory usage of each benchmark is shown
in Table II. The variation in memory are analogous to the
benchmark size.

TABLE I
MEMORY USED FOR THE REPRESENTATION OF EACH BENCHMARK’S
NETLIST INSIDE VPR 7.0.

Benchmark Memory Benchmark Memory
mkDelay-
arm_core 228.67 MB Worker32B 114.49 MB
bgm 491.86 MB mkPktMerge 5.237 GB
blob_merge 94.59 MB mkSMAdapter4B 19.42 MB
boundtop 41.82 MB or1200 47.61 MB
ch_intrinsics 9.23 MB raygentop 32.68 MB
diffeql 10.61 MB sha 36.68 MB
diffeq2 8.75 MB stereovisionQ 158.44 MB
LUSPEEng 393.10 MB stereovisionl 166.87 MB
stereovision2 464.18 MB

When a complex block is read from the netlist its internal
interconnection is processed and the corresponding routing
graph is created. This graph is persistent throughout the
execution of the P&R. In order to reduce the graphs footprint
we save in a global vector only the information about the pins
of the block, their connections, if they are unconnected, or
their equivalence, but not the internal connections. Then we
free the graph before reading the next complex block. With
this modification we achieve two things:

1) The memory used by the vector is much less than this
used by the graph since we don’t include the internal
connections

2) With the use of a vector we achieve better memory
locality than with the graph.

Although there is an effective reduction in the memory
footprint this solution has the drawback that we can’t change
the internal mapping of the blocks. This option is used
sometimes by slow placement algorithms that use multiple
optimization phases in an effort to further optimize the
quality of mapping. Since the default VPR placer and our
placer are not changing the internal mapping of the blocks,
disabling this option has no effect in the quality of the results.

2) Architecture-level optimizations : During the routing
phase the blocks of the design are interconnected through
the resources of the FPGA. For this reason independent
from the routing algorithm that will be used, the EDA tools



need the representation of all possible interconnection paths.
In VPR 7.0 a large percentage of execution time is spent
building the architecture’s rr graph, a routing resource graph
(rr graph) that has as nodes every pin and every track of the
FPGA routing infrastructure. This percentage has been reduced
significantly by using the proposed VKernel-Planner tool, due
to appropriate selection of a subarea for the application kernel.

Each switchbox in an reconfigurable architecture connects
the horizontal and vertical channels at their junction. De-
pending on the switchbox architecture each wire from each
side (top, bottom , left, right of the switchbox) can be
connected up to 3 x N wires where N is the channel width.
This becomes more complicated when we have non-uniform
routing architecture, where tracks can have variable lengths.
For example in an FPGA with array size 200 x 200 (modern
medium-size FPGA) and channel width of 200 the memory
size of this array is 1,775.4 MB or 1.73 GB.

In order to reduce the memory footprint we changed
the allocation of this array from static to dynamic. The
information is needed every time a horizontal or vertical
channel is build (in the rr graph) at the position x,y. In order
to minimize the memory allocation we allocate and calculate
the array at each x column and then deallocated it. This gives
us the best trade-off between execution time and memory
footprint. If the allocation/deallocation would be done in finer
grain (in X,y point and not column) we found out that there
was a significant increase in execution time.

3) Universal Memory Optimizations In order to
accurately evaluate placement solution, VPR before placement
constructs an array that correlates routing delays with blocks’
physical distance. For this reason the router builds the rr
graph of the FPGA and routes blocks that have different
distances between them. We have replaced this step with an
encoded bit file that contains this information. The size of
this file is a few KBytes even for large FPGAs. Our proposed
placer reads that file and creates the array without the need
for rr graph and routing. Lastly minor memory footprint
reduction has been achieved by restructuring and changing
the internal types in various graph structures.

4) Proposed Dynamic Memory Allocators: Even if it is a
CPU and memory intensive task, we have found out that dy-
namic application mapping to an FPGA has static requirements
in terms of memory usage and a solid memory usage pattern.
As such, we propose to deploy a simpler dynamic memory
allocator to reduce the execution path of memory allocation
operations, improving the execution times and/ or the memory
footprint.

While profiling the VPR application, we have noticed that
the memory request sizes were very specific and it is safe to
assume that the application data structures use those specific,
fixed sizes. Those sizes can be used to tweak the allocator’s
internal data structure organization in order to host memory
requests of them in a faster and more efficient way.

We have compiled our solution against two modern dynamic

memory allocators, jemalloc [18] and Lockless [20]. Jemalloc
is the default allocator in FreeBSD and Firefox, while Lockless
is an allocator using many optimization tricks that modern
systems support. When the application frees memory portions,
the chosen memory allocators are more reluctant to return it to
the system than the default allocator in most Linux systems,
glibc’s allocator. If the system runs out of memory, the virtual
memory of the Linux kernel is smart enough to put to the swap
area the memory addresses of processes which are currently
not running.

In jemalloc each thread maintains a cache of objects and
during an allocation request and before the thread accesses the
memory regions, it checks first for a cached available object.
Allocation via a thread cache requires no locking whatsoever
in contrast with the possibility of using multiple locks while
searching over different memory regions. As we have noticed,
some small sizes are dominantly popular and thus we may
tweak this configuration to maximize the allocation speed. At
any case, thread caches should offer speed without effecting
the memory fragmentation.

Lockless takes a different approach to the management
of small sizes by using a slab allocator. Slabs are memory
regions of 64 KiB plus 128 bytes for keeping the necessary
metadata. There are many slabs, one for each size up to 512
bytes increasing in step of 16 bytes. One possible drawback
compared to jemalloc’s implementation is that slabs are traded
between parallel threads and might be subject to synchroniza-
tion overhead. However, both Het-JITPR and original VPR are
using a single thread, so no particular slowdown is expected
by using the slab allocator.

V. EXPERIMENTAL RESULTS

This section provides a number of experimental results
and comparisons that highlight the efficiency of the proposed
solution. For this purpose, we employ 17 common hardware
designs that some make use of multipliers and memories. Table
IIT summarizes the characteristics of these benchmarks. The
implementation medium for our experimentation is an FPGA
platform consisted of an array of 200x200 logic blocks, as
well as a number of embedded multipliers and memories,
similar the Altera Stratix IV architecture.

A. Quality of mapping a single design

Next, we quantify the performance of the derived solution
in terms of maximum operation frequency. The results of
this analysis for the two alternative flows are summarized in
Table IV. Based on this table, our framework has a gain
in terms of maximum operation frequency compared to the
VPR, 1.26x on average, because we significantly reduced the
solution space of placement. The placer is using a simulated
annealing algorithm where we significantly decreased the
number of random moves compared to VPR [4] tool. The
FPGA architecture used consists of roughly 40,000 blocks of
every type. With the proposed toolflow that number is tailored
specifically to each application. So lets take three examples
from Table IV:



TABLE III
CHARACTERISTICS OF THE EMPLOYED BENCHMARKS.
Benchmark LUTs | Inputs | Outputs | Mem | Mult
arm_core 13697 133 179 40 0
bgm 30782 257 32 0 11
blob_merge 6018 36 100 0 0
boundtop 3037 275 192 1 0
ch_intrinsics 425 99 130 1 0
diffeql 485 162 96 0 5
diffeq2 322 66 96 0 5
LUSPEEng 21739 114 102 45 8
mkDelayWorker32B 5631 511 553 43 0
mkPktMerge 228 311 156 15 0
mkSMAdapter4B 1977 195 205 5 0
or1200 3053 385 394 2 1
raygentop 2147 239 305 1 7
sha 2277 38 36 0 0
stereovision( 11472 157 197 0 0
stereovision| 10287 133 145 0 38
stereovision2 29768 149 182 0 213

— ch_intrinsics: In VPR [4], placement evaluates in total
225,986 solutions while each block has 40,000 possible
positions. Our placer evaluates 33,782 solutions but each
block has 465 possible positions.

— mkPktMerge: In VPR [4], placement evaluates in total
523,852 solutions while each block has 40,000 possible
positions. Our placer evaluates 64,610 solutions but each
block has 1,180 possible positions.

— LUSPEEng: In VPR [4], placement evaluates in total
3,908,545 solutions while each block has 40,000 possible
positions. Our placer evaluates 298,480 solutions but each
block has 3,080 possible positions.

This also explains why in the largest benchmarks, we see a
slight decrease in the Max operating frequency. As the design
reaches in size the size of the FPGA the gains offered by the
VKernel-Planner step are diminished.

TABLE IV
COMPARISON BETWEEN THE HET-JITPR AND THE VPR TOOLFLOW, IN
TERMS OF MAXIMUM OPERATION FREQUENCY.

Max Op. Freq (MHz)

Benchmark VPR [4] | Het-JITPR || Gain
arm_core 52.716 53.215 1.009 x
bgm 39.938 36.514 0.914 %
blob_merge 90.913 89.820 0.988 %
boundtop 124.247 146.075 1.176 x
ch_intrinsics 118.986 256.546 2.156x
diffeql 40.905 45.932 1.123x
diffeq2 50.841 57.959 1.140x
LUSPEEng 8.5423 8.4703 0.992 x
mkDelayWorker32B 95.567 128.85 1.348x
mkPktMerge 141.55 220.384 1.557x
mkSMAdapter4B 113.544 162.929 1.435%
or1200 59.423 66.332 1.116x
raygentop 107.758 192.735 1.789x
sha 70.7102 72.062 1.019x
stereovision( 172.764 218.32 1.264 %
stereovision 1 99.393 154.015 1.550%
stereovision2 57.356 53.450 0.932x
Average - - 1.265 %

B. Analysis of execution time and Memory footprint

Execution time is a critical metric since we target applica-
tion mapping at runtime, on the end user platform. For every
optimization we propose we use the VPR flow for comparison
as it is highly regarded in academia and it is flexible enough to
support hard blocks like memories and multipliers. Since the
VPR does not support multiple benchmarks, the comparison
in terms of execution time is performed for mapping a single
benchmark.

Memory usage and footprint is quickly becoming the com-
putational bottleneck for FPGA CAD tools. In order to map
applications onto FPGAs on runtime in the end user platform,
it must be significantly reduced.

Table V shows the effect of the memory optimizations in
terms of execution time and memory footprint on the original
VPR and the proposed Het-JITPR. The “gains” and the "% of
the VPR memory footprint” columns are in comparison with
the original VPR’s execution time and memory footprint.

The speed-up achieved in the original VPR with the memory
optimizations is because: i) the universal optimizations cut
down the computation time and ii) the memory footprint
reduction results in faster computation and memory locality.
If we add the optimizations with the use of the floorplanning
step and our custom placer and router, we achieve a speed-up
of around 40x on average compared to the stock VPR.

The memory footprint gains achieved with the proposed
memory optimizations totalling in 40% reduction on average.
It’s evident that despite the large variation in the benchmark
sizes we don’t observe such variations in the memory re-
ductions. That confirms the profiling results that suggested
that the FPGA architecture is the main culprit for mem-
ory consumption in the process of application mapping. All
memory optimizations are carefully developed in order to
avoid affecting the quality of the final solution, meaning the
application is placed and routed onto the FPGA in the exact
same way with and without these optimizations. When we add
also the algorithmic optimizations of the Het-JITPR we reach
90% reduction.

Table VI shows the effect of the custom dynamic memory
allocators when all the othe memory optimizations are turned
on. We see that both jemalloc and Lockless allocators result
in an increase of 12% and 28% respectively on average in
terms of memory footprint compared with the glibc’s stock
memory allocator. When comparing this with the execution
time columns in table VI the trade-off between execution
time and memory footprint is apparent. Jemalloc and Lockless
achieve a 5% and 10% decrease on average execution time.

The reason behind this is two-fold: (a) their allocation
strategy matches better the memory usage patterns of the Het-
JITPR toolflow and (b) the memory allocators provide simpler
and therefore faster locking mechanisms than glibc’s malloc.
When the requested sizes for memory allocation are limited
and without large variance, these allocators perform much
better than the default one. Both allocators try to improve
the execution speed of their allocation function by moving
some of the work to be done during de-allocation; sometimes



TABLE V

COMPARISON BETWEEN THE ORIGINAL VPR AND HET-JITPR TOOLFLOW WITH MEMORY OPTIMIZATIONS, IN TERMS OF EXECUTION TIME AND
MEMORY FOOTPRINT.

Benchmark E.xecution Time ] Memory Footprint
VPR VPR with ] Het-JITPR Gain VPR VPR with ] Het-JITPR % of the VI"R
Memopts | with Memopts Memopts | with Memopts | memory footprint
arm_core 176.03 111.00 21.54 8.17x 5746 3417 655 11.39%
bgm 216.18 163.51 38.6 5.60x 6163 3509 1399 22.69%
blob_merge 146.81 83.28 5.02 29.25x 5497 3361 281 5.11%
boundtop 143.41 79.57 3.05 47.02x 5408 3337 191 3.54%
ch_intrinsics 140.02 76.10 1.2 | 116.68x 5339 3325 132 2.46%
diffeql 141.62 77.44 1.45 97.67x 5350 3327 132 2.47%
diffeq2 140.79 76.75 1.11 | 126.84x 5339 3327 129 2.41%
LUSPEEng 196.81 140.54 33.91 5.80x 6049 3468 1121 18.54%
mkDelayWorker32B 159.81 92.66 14.59 10.95x 5510 3372 571 10.37%
mkPktMerge 142.28 80.73 3.1 45.90x 5363 3330 144 2.69%
mkSMAdapter4B 143.37 79.02 2.44 58.76x 5377 3338 176 3.26%
or1200 144.98 81.51 5.83 24.87x 5418 3343 297 5.47%
raygentop 142.94 79.29 3.44 41.55x 5384 3340 183 3.40%
sha 141.78 78.00 2.05 69.16x 5396 3338 181 3.34%
stereovisionQ 150.59 87.29 10.86 13.87x 5616 3402 408 7.27%
stereovision|l 158.96 95.24 12.69 12.53x 5630 3410 502 8.92%
stereovision2 229.27 175.18 53.18 431x 6150 3534 1713 27.86%
Average 159.74 97.48 12.59 42.29x | 5572.67 3381.13 483.18 8.31%

TABLE VI

COMPARISON BETWEEN THE CUSTOM ALLOCATORS IN HET-JITPR WITH ALL OTHER MEMORY OPTIMIZATIONS TURNED ON, IN TERMS OF EXECUTION
TIME AND MEMORY FOOTPRINT.

Het-JITPR Execution Time Het-JITPR Memory Footprint
Benchmark - z
Linux malloc Linux malloc

(in seconds) Jemalloc Lockless (in Mb) Jemalloc Lockless
arm_core 21,54 0,91x 0,88x 278 1,15x 1,22x
bgm 38,6 0,89x 0,85x 569 1,11x 1,02x
blob_merge 5,02 0,91x 0,85x 151 0,98x 1,44x
boundtop 3,05 0,97x 0,90x 136 0,85x 1,47x
ch_intrinsics 1,2 0,98x 0,93x 122 1,09x 1,23x
diffeql 1,45 0,97x 0,93x 122 1,07x 1,26x
diffeq2 1,11 0,98x 0,96x 121 1,04x 1,06x
LUBPEEng 33,91 0,92x 0,90x 459 1,07x 1,01x
mkDelayWorker32B 14,59 0,95x 0,90x 301 1,33x 1,35x
mkPktMerge 3,1 0,99x 0,93x 125 1,06x 1,42x
mkSMAdapter4B 2,44 0,96x 0,89x 132 1,14x 1,27x
or1200 5,83 0,97x 0,90x 168 1,40x 1,49x
raygentop 3,44 0,97x 0,90x 133 1,16x 1,56x
sha 2,05 0,96x 0,90x 132 1,14x 1,23x
stereovisionQ 10,86 0,91x 0,87x 198 1,32x 1,43x
stereovisionl 12,69 0,91x 0,88x 225 1,11x 1,32x
stereovision2 53,18 0,92x 0,88x 824 1,00x 0,94x
Average - 0,94x 0,90x - 1,12x 1,28x

they do not even decommit or purge the memory which the
application no longer needs. These strategies, as well as the
simple memory pattern of our application lead to a faster
execution when these custom memory allocators are used.

Both allocators perform more aggressively than the original
one and do not always return the de-allocated memory to the
system; instead they prefer to keep managing it for future
allocations that Het-JITPR might request. This eliminates the
possible system call overhead for extra memory on a future
request, but at the cost of additional memory fragmentation
during application execution.It should noted that the memory
footprint is always much smaller compared to the stock VPR’s
footprint.

C. Multiple designs onto the FPGA Fabric

The experimental results provided in the previous sub-
sections affect benchmarks that are mapped onto the target
reconfigurable architecture as stand-alone applications (as-
suming that our FPGA platform is empty). However, our
proposed toolflow can implement multiple applications onto
a single FPGA, even if other applications are already mapped
to the device. In order to quantify this feature, we evaluate
the efficiency of the proposed solution to handle multiple
application implementations (i.e. through dynamic insertion
and removal of applications).

Note that for this experimentation, the target architecture
is similar to the previous cases. Regarding the sequence of



applications, we created a queue consisting of 110 circuits
from a subset the previous benchmarks which are mapped dy-
namically onto the target architecture. More efficient schedul-
ing algorithms, (like priority based scheduling) can be easily
employed since our toolflow is developed as modular, but such
algorithms are out of the scope of this research work.

Normalized max operation Frequency

VTR (only one
benchmark mapped
onto the FPGA)

sha

raygentop

or1200
mkSMAdapter4B
mkPktMerge
mkDelayWorker32B
diffeq2

diffeql

ch_intrinsics

Average value I

r t t t J

0,85 0,90 0,95 1,00 1,05

boundtop

blob_merge

Fig. 2. Evaluation of the proposed framework when multiple applications are
mapped onto the FPGA, in terms of maximum operation frequency

The flexibility of using even irregular contiguous areas
for implementing the application, together with the proposed
VKernel-Planner advanced heuristics and the finite resources
of an FPGA platform affect the maximum operation frequency
of each circuit. In our scenario of dynamic application map-
ping, the toolflow does not know a priori the characteristics
of future applications.

Through our experimentation, each benchmark was mapped
several times and the average maximum operation frequency is
plotted at Figure 2. The reference solution corresponds to the
performance of each benchmark when it is mapped onto the
FPGA with the usage of VPR tool as a standalone application.
On average the proposed solution has a penalty of only 4.7%
with a small variation compared to our reference. This proves
the efficiency of our solution even under runtime constrains.

VI. CONCLUSION

A novel methodology for supporting dynamic mapping of
multiple applications onto an heterogeneous FPGA through
VKernels was presented in this work. This methodology, along
with memory optimizations and custom dynamic memory
allocators, led to fast and efficient application implementation.
Based on our experimentation, we achieve to perform applica-
tion mapping 40 x, faster on average,compared to a state-of-art
approach, without any degradation in the maximum operation
frequency, using only a small fraction, 1/12, of memory used
in a state-of-art tool for executing the proposed toolflow. This
serves as a proof of concept that application mapping onto
FPGA platforms can be performed dynamically even on end
user embedded systems.
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