
Hardware Accelerators for Financial Applications in

HDL and High Level Synthesis

Ioannis Stamoulias

School of Electrical & Computer Engineering

National Technical University of Athens (NTUA)

Athens, Greece

jstamoulias@gmail.com

Christoforos Kachris, Dimitrios Soudris

Institute of Communication and Computer Systems

National Technical University of Athens (NTUA/ICCS)

Athens, Greece

kachris, dsoudris @microlab.ntua.gr

Abstract—Many financial applications, like the one used for

risk valuation, need high performance and low latency

implementations to sustain the high volume of data that need to be

processed. This paper presents a suite of high performance

hardware accelerators for financial applications used in risk

valuation (Black & Scholes, Black-76 and Binomial). The

accelerators are developed in fixed point using HDL (VHDL) and

in floating point using HLS languages. High Level Synthesis

(HLS) allows fast implementation of hardware accelerators from

the original legacy codes. The HLS hardware accelerators have

been mapped onto a PCIe FPGA (ADM-KU3) board, through the

Xilinx SDAccel framework and a thorough comparison in terms

of resources, performance and accuracy has been performed. The

performance evaluation shows that HLS can achieve higher

accuracy due to the floating point, but requires up to 20% higher

number of resources in terms of DSPs while the fixed-point

implementations developed in HDL can save significant space in

terms of resources but with limited accuracy compared to the

software code.

Keywords—high level synthesis; hardware accelerators;

financial applications; reconfigurable computing

I. INTRODUCTION

High Level Synthesis tools allow the development of
hardware accelerators in reconfigurable logic by using high level
languages such as C, C++ and OpenCL. The main challenging
task of the designer is to annotate the original code with specific
keywords that will help the tool to map the algorithm to efficient
hardware. There are several tools that have been proposed in the
literature for high level synthesis [1][2][3], but only few of them
provide a complete framework where both the accelerator and
the CPU host can be implemented and simulated as a whole
system. SDAccel tool [4] is based on Xilinx’s HLS framework
and provides such a framework for the development of an entire
system. It utilizes Vivado HLS tool for the implementation of
the hardware accelerator and uses Xilinx’s cores for the
communication through a PCIe port with the Host system
running on a CPU.

In this paper, we develop efficient hardware accelerators for
three commonly used algorithms in financial applications. These
algorithms are developed both using hardware description
languages VHDL and HLS based on C and the performance in
terms of hardware resources and accuracy are measured. Overall
the main contributions of the paper are the followings:

• Efficient hardware architectures for three algorithms in
financial applications for risk valuation using HDL for fixed

point implementations and HLS for floating point
implementations.

• Performance evaluation of the hardware accelerators in
terms of resources (area), performance (clock frequency) and
accuracy compared to the software reference code.

• A thorough comparison between HDL and HLS in
terms of resources, throughput and accuracy.

II. RELATED WORK

In the literature, there are not many studies that implement
the same algorithm with both HLS and HDL. In [5], a
comparison is shown between the HLS and the hardware
description languages for image processing. In this study, the
HLS design was implemented in half of the time, but required
61% more LUTs and did not perform as fast in operational
maximum frequency tests. In [6], several financial option price
solvers have been implemented in FPGA. That work, proposed
a framework for comparing the performance of numerical option
pricing methods using FPGAs, considering both speed (time to
solution) and accuracy (quality of solution), and examines how
the speed-accuracy trade-off curve varies for each method. The
accelerators are designed in HDL and the main comparison is on
the accuracy of the solvers and not the speedup that they provide.
Several works exist that present implementations of Monte
Carlo methods for financial services, such as [7], [8] and [9]. In
[10], a study is performed on HLS, for financial applications,
which shows that the HLS hardware description languages are
mature enough to be adopted from the industry. In [11], [12],
several architectures are shown for acceleration of financial
applications.

In this paper, we present a suite of high performance FPGA
accelerators for risk valuation algorithms. The fixed-point
implementations are implemented in VHDL utilizing less
resources (DSP units) but with lower accuracy. The floating-
point implementations are developed using HLS achieving
higher accuracy, but also requiring higher number of resources.
A thorough performance evaluation is performed in terms of
accuracy, throughput and hardware resource between these two
implementations.

III. FINANCIAL ACCELERATORS

Automation using Technology in Trading & Exchanges is
considered as de-facto principle nowadays. Financial
applications require low latency and high throughput to cope
with the demands of the market, this is the reason that the

financial sector is a prominent user of High Performance
Computing facilities. Implementations of hardware financial
accelerators on reconfigurable logic are perfect candidates for
this sector, because they can achieve those requirements through
the use of parallelization techniques. Three commonly used
algorithms for financial application, such as Risk Valuation, are
Black-Scholes, Black-76 and Binomial algorithms. The Black-
Scholes model gives a theoretical estimate of the price of
European-style options and can also be used for American-style
call options. The Black-76 model is a variant of the Black-
Scholes model that supposes the underlying is lognormal but the
underlying price is the future prices, not the spot price. The
Binomial option pricing model discretize time and price of an
underlying asset, and mapping both onto a binary tree, thus can
handle American put options that can be exercised at any time.
In this paper, we investigate those three algorithms:

• The Black & Scholes method for American call options
based on spot prices for stock options.

• The Black-76 method for European options based on
future prices for index options.

• The Binomial method, without dividends, for
American put options based on spot prices for stock options.

A. Black-Scholes model

The Black-Scholes model [13], for the current prices of a
European options on a non-dividend paying stock, can be
calculated from equation (1) for the call option and from
equation (2) for the put option. When no early exercise is
required, an American call option can use the same equation (1)
as the European options.

 𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) (1)

 𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1) = 𝑐 + 𝐾𝑒−𝑟𝑇 − 𝑆0 (2)

Where 𝑑1 =
ln(𝑆0 𝐾⁄)+(𝑟+𝜎2 2⁄)𝑇

𝜎√𝑇
 and

 𝑑2 =
ln(𝑆0 𝐾⁄)+(𝑟−𝜎2 2⁄)𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇

In the equations, N(.) represents the cumulative distribution
function of the standard normal distribution, S0 represents the
Stock price at t=0 (spot price), K represents the Strike price, r
represents the Risk-free interest rate, σ represents the Stock
price volatility and T represents the Time to maturity.

An algorithmic analysis was conducted considering a
pipelined architecture that can receive new input per cycle.
More kernels can run in parallel to process blocks of data for
increase in the performance of the system. Table 1 presents the
required operations for the Black-Scholes method. If both call
and put options are needed some operations can be used for both
calculations, with bold are the extra operations required if no
call option is going to be implemented. In the following
hardware implementations only the call option was
implemented, that can be used with American-type options.

B. Black-76 model

The Black-76 model [14] is a variant of the Black-Scholes
option pricing model and can be used for pricing options on
future contracts, bond options, interest rate caps/floors and
swaptions. The call option is calculated using the equation (3)
and the put option from the equation (4).

 𝑐 = 𝑒−𝑟𝑇(𝐹𝑁(𝑑1) − 𝑋𝑁(𝑑2)) (3)

 𝑝 = 𝑒−𝑟𝑇(𝑋𝑁(−𝑑2) − 𝐹𝑁(−𝑑1)) = 𝑐 + 𝑒−𝑟𝑇(𝑋 − 𝐹) (4)

Where 𝑑1 =
ln(𝐹 𝑋⁄)+(𝜎2 2⁄)𝑇

𝜎√𝑇
 and 𝑑2 = 𝑑1 − 𝜎√𝑇

In the equations, F represents the Future price, X represents
the Exercise price, σ represents the future price volatility and
the rest are the same as those of the Black-Scholes model.

An algorithmic analysis was also conducted considering a
pipelined architecture that can receive new input per cycle.
More kernels can run in parallel to process blocks of data for
increased performance. Table 2 presents the required operations
for the Black method. Bold number represent again the extra
operations needed if no call options are going to be computed.
Both call and put options were required and implemented for
the pricing of the index options on future prices.

C. Binomial model

The Binomial pricing model [15] traces the evolution of the
options underlying variables in discrete time by generate a
binomial tree for a number of time steps until maturity. Each
node of the binomial tree represents a possible price at a given
point in time and the final nodes calculates the option values of
their preceding nodes. Each node has two possible transitions,
upwards (increase value) and downwards (decrease value). The
call price at each node is calculated from the equation (5), the
put price at each node from the equation (6), the terminal call
price from the equation (7) and the terminal put option from the
equation (8).

 𝐶𝑖,𝑗 = 𝑀𝑎𝑥(𝑆𝑖,𝑗 − 𝐾, 𝑒−
𝑟𝑡

𝑛 (𝑝𝐶𝑖,𝑗+1 + (1 − 𝑝)𝐶𝑖+1,𝑗+1)) (5)

 𝑃𝑖,𝑗 = 𝑀𝑎𝑥(𝐾 − 𝑆𝑖,𝑗 , 𝑒−
𝑟𝑡

𝑛 (𝑝𝑃𝑖,𝑗+1 + (1 − 𝑝)𝑃𝑖+1,𝑗+1)) (6)

 𝐶𝒊,𝑛 = 𝑀𝑎𝑥(𝑆𝑖,𝑛 − 𝐾, 0) (7)

 𝑃𝒊,𝒏 = 𝑀𝑎𝑥(𝐾 − 𝑆𝑖,𝑛 , 0) (8)

Where 𝑆𝑖,𝑗 = 𝑆0𝑢𝑗−1𝑑𝑖−1, i, j: 0, …, n is the stock price at

each node, 𝑢 = 𝑒𝜎√𝑡 𝑛⁄ is the increased factor, 𝑑 = 𝑒−𝜎√𝑡 𝑛⁄ =
1

𝑢
 is the decreased factor, 𝑝 = (𝑒𝑟𝑡 𝑛⁄ − 𝑑) (𝑢 − 𝑑)⁄ is the

probability of upward move and (1-p) is the probability of down
move. The model that was used and implemented does not
consider dividends. S0 represents the Stock price at t=0, and the
rest are the same as those of the Black-Scholes model.

Table 1 Algorithmic analysis of the Black-Scholes model (no reuse of

operations)

 Calc.

d1, d2

Approx.

N(.)

Calc.

Call

Calc.

Put
Sum

Add/Sub 3 6 1 2/1 12

Multiplier 3 9 4 4 16

Divider 2 1 0 0 3

Square root 1 0 0 0 1

Exponential 0 1 1 1 2

Logarithm (ln) 1 0 0 0 1

Table 2 Algorithmic analysis of the Black-76 model (no reuse of
operations)

 Calc.

d1, d2

Approx.

N(.)

Calc.

Call

Calc.

Put
Sum

Add/Sub 2 6 1 2/1 11

Multiplier 3 9 4 1/4 17

Divider 2 1 0 0 3

Square root 1 0 0 0 1

Exponential 0 1 1 1 2

Logarithm (ln) 1 0 0 0 1

For the algorithmic analysis, a full parallel and pipelined
architecture with N parametric tree stages that can receive new
input per cycle was considered. Table 3 presents the required
operations for the Binomial method. In the following hardware
implementations, only the put option was implemented, that
was required for the American options.

IV. HARDWARE IMPLEMENTATION OF THE ALGORITHMS

A. Black-Scholes implementation

The Black-Scholes model was initially implemented using
VHDL in fixed point arithmetic. A straight forward, fully
pipelined design with parallelization at the operations was
adopted. Figure 1 presents the architecture of the Black-Scholes
model where each stage is pipelined. The divider is fully
pipelined with stages equal to the amount of dividend bits and
the multipliers uses DSP blocks with 4 stage pipelines for better
performance of the overall system. Due to large word length,
more than one DSP are required for each multiplication. The
ln(.) and exp(.) functions were approximated with Taylor series.
The N(.) function was approximated using a polynomial
function with 6 decimal places accuracy, according to the one

used at the original software implementation. All three functions
are fully parallel and pipelined. The required Black-Scholes
input accuracy is at 5 integer digit and 2 fractional digit for S0
and K variables and at 1 integer digit and 2 fractional digit for T,
r and σ variables. For the fixed-point implementation 18.15 bit
was used for S0 and K and 2.15 bit for T, r and σ inputs. The
implementation of the Black-Scholes kernel is parameterized at
the fractional part that must be common for all inputs, the integer
part and the amount of the pipeline levels used inside the
multiplications, currently at 4 level for achieving higher
frequency. The exponent component supports values only at the
[-11, 11] field, higher value support was removed for lower
resources requirements.

The Black-Scholes model was also implemented using HLS
in floating point single precision arithmetic. The C code was
described in a way that enables the tool to produce a design
closer to the described architecture. The algorithm was divided
in 3 functions, the calculation of the d1 and d2, the calculation of
the cumulative distribution function and the calculation of the
call value, similar to the basic modules of the VHDL
implementation. Also, each operation was stored in different
variable throughout the algorithm that produced better results
closer to those of the HDL implementation. The directive used
from Vivado was ‘#pragma HLS PIPELINE’ in each function
including the top. Both implementations target the Xilinx Kintex
UltraScale XCKU060 FPGA, with clock constraint at 4 ns. HDL
implementation achieved 3.81 ns period and HLS
implementation achieved 3.61 ns period with comparable
throughputs.

B. Black-76 implementation

The Black-76 model was initially implemented using
VHDL in fixed point arithmetic. Again, a straight forward, fully
pipelined design with parallelization at the operations was
adopted. Figure 2 presents the architecture of the Black-76
method where each stage is pipelined. The implementation uses
the same internal modules that were created for the Black-
Scholes method. The required Black-76 input accuracy is at 5
integer digit and 2 fractional digit for F and X variables and at
1 integer digit and 2 fractional digit for T, r and σ variables. For
the fixed-point implementation 18.18 bit was used for F and X
and 2.18 bit for T, r and σ inputs. Higher word length, than the
Black-Scholes kernel, was used due to higher need of accuracy
in the internal operations. The implementation of the Black-76
kernel is parameterized at the fractional part that must be
common for all inputs, the integer part and the amount of the
pipeline levels used inside the multiplications, currently at 4
level for achieving higher frequency. The exponent component
supports values only at the [-11, 11] field, higher value support
was removed for lower resources requirements.

The Black-76 model was also implemented using HLS in
floating point single precision arithmetic. The C code was again
described in a way that enables the tool to produce a design
closer to the described architecture. The algorithm was again
divided in 3 functions, the calculation of the d1 and d2, the
calculation of the cumulative distribution function and the
calculation of the call value, similar to the basic modules of the
VHDL implementation. The directive used from Vivado was
‘#pragma HLS PIPELINE’ in each function including the top.
Both implementations target the Kintex UltraScale XCKU060
FPGA. For the HDL implementation, a clock constraint at 4.5ns
was used and achieved 4.22 ns period, due to larger word
length. This was the first indication that floating point
arithmetic is required for those applications. The HLS

Table 3 Algorithmic analysis of the Binomial model (no reuse of
operations)

 Init.

Steps

Up/

Down

Calc.
Call

Calc. Put Sum

Add/Sub 3 0

N+

2[(N-1)2-
(N-1)(N-2)

2
]

N+

2[(N-1)2-
(N-1)(N-2)

2
]

2N+

4[(N-1)2-
(N-1)(N-2)

2
]+3

Multiplier 3 N-1
2[(N-1)2-
(N-1)(N-2)

2
]

2[(N-1)2-
(N-1)(N-2)

2
]

3N+

4[(N-1)2-
(N-1)(N-2)

2
]+2

Divider 2 N-1 0 0 N+1

Square root 1 0 0 0 1

Exponential 2 0 0 0 2

Figure 1 Architecture for the Black-Scholes method

d2

N(.) N(.)

Mult

INV

Exp(.)

Mult Mult

Mult

Sub

Call

S0 K σ Tr

Div

ln(.)

Mult

Sqrt

Mult

Add

>>

Mult

Add

Div

Sub

d1

implementation achieves comparable throughput as the HDL
implementation, with clock constraint at 4ns and achieved at
3.66 ns.

C. Binomial implementation

The Binomial model was initially implemented using VHDL
in fixed point arithmetic. A fully pipelined design was also
adopted, with the ability of folding the binary tree for lower
hardware requirements. When folding is used the same
Processing Elements (PEs) of a tree stage can process more than
one stage of the tree, in expense of extra delays. Figure 3
presents the architecture of the Binomial method that supports
parametric tree depth N and was implemented to minimize the
required DSPs. The architecture is designed to be fully pipelined
so new input at each cycle can be received, when no folding is
used. The implementation uses the same internal modules that
were created for the previous methods. All values that are
generated from ascending the tree are computed first, before
acceding the PEs of the tree and stored to registers that are
buffered for better performance. The descendant of the tree is
processed in the tree PEs. To support larger trees or smaller
FPGA devices the design also support parametric folding, the
ability to use the same PEs of one level to process more steps of
the tree. The required Binomial input accuracy is at 5 integer
digit and 2 fractional digits for S0 and K variables and at 1 integer
digit and 2 fractional digits for T, r and σ variables. For the fixed-
point implementation 18.15 bit was used for S0 and K and 2.15
bit for T, r and σ inputs. The implementation of the Binomial
kernel is also parameterized at the fractional part that must be
common for all inputs, the integer part, the amount of the
pipeline levels used inside the multiplications, currently at 4
level for achieving higher frequency, the tree depth to be used
and the folding factor. The exponent component supports values
only at the [-2, 2] field, higher value support was removed for
lower resources requirements.

The Binomial model was also implemented using HLS in
floating point single precision arithmetic. The C code was

described in a way to that enable the tool to produce a design
closer to the described architecture. Each operation was stored
in different variable throughout the algorithm that produced
better results closer to those of the HDL implementation. The
directives used from Vivado was ‘#pragma HLS PIPELINE’ for
the entire design, ‘#pragma HLS UNROLL’ for the FOR
statements and ‘#pragma HLS ARRAY_PARTITION
variable=Stock dim=1’ for the arrays used to store internal
values. The HLS implementation achieves comparable
throughput as the HDL implementation for the same Xilinx
Kintex UltraScale FPGA, with clock constraint at 4ns. HDL
implementation achieved 3.96 ns period and HLS
implementation achieved 4.43 ns period.

V. SYSTEM EVALUATION

In this section, we compare, in terms of resources
requirements and achieved precision, the VHDL and the HLS
implementations for each of the three algorithms, Black-
Scholes, Black-76 and Binomial. As mentioned in previous
sections the VHDL implementation uses fixed point arithmetic
and the HLS implementation uses floating point arithmetic. So,
in our analysis we also consider the different arithmetic that
those two types of implementation utilize. The utilizations
presented in the following figures are for the Xilinx Kintex
UltraScale FPGA and the precision was measured using the
input data provided by the original software implementation.

The first three figures present the resources requirements
comparison for the three implemented methods. Figure 1
presents the resources comparison for the Black-Scholes

Figure 2 Architecture for the Black method

d2

N(.) N(.)

Mult

INV

Exp(.)

Mult Mult

MultSub

F X σ T r

Div

ln(.)

Mult

Sqrt

Mult

>>

Mult

Add

Div

Sub

d1

Sub

Mult

Add

Call Put

Figure 3 Architecture for the Binomial method (Folding x1 top, Folding

x2 bottom, both N=4)

S0 Kσ T r

Initialize
module

N

u
p

(1-p)

Steps Up/Down

Mul Div

Mul Div

Mul Div

B
U
F
F
E
R
|
S
T
A
G
E

PE PE PE PE

PE PE PE

PE PE

PE

S0 Kσ T r

Initialize
module

N

u
p

(1-p)

Steps Up/Down

Mul Div

Mul Div

Mul Div

B
U
F
F
E
R
|
S
T
A
G
E

PE PE PE PE

PE PE

implementations. The requirements for the VHDL
implementation are lower compared to the HLS
implementation, except in the case of the required Flip-Flops.
The increased resources requirements are mainly due to the
floating-point arithmetic used in the HLS implementation,
especially for the DSP blocks. So, we can see that the HLS
implementation does not add extra overhead for this type of
applications. We would expect to see comparable requirements
if we had a floating-point HDL implementation. Figure 2
presents the resources comparison for the Black-76
implementations. In this case, the requirements for the VHDL
implementation are higher compared to the HLS
implementation, except in the case of the required DSPs. This
algorithm required larger word lengths to achieve better
precision. The word length is so large in some modules that it
is preferred the use of floating point operations. The extra DSP

blocks that are required in the HLS implementation, can again
be attributed to the floating-point arithmetic. Figure 3 presents
the resources comparison for the Binomial implementations. In
this case, the requirements for the VHDL implementation is
also higher for LUTs and lower for Flip-Flops and DSPs
compared to the HLS implementation. At this point we should
point out that both implementations are for a Binomial tree with
24 stages depth, which is the largest tree size that can fit to the
targeted FPGA when produced from the HLS design. The HDL
design can produce up to 28 full pipelined stages tree for the
targeted FPGA. No folding was considered for either
implementation. In general, we can see that the DSP
requirements are always grater for the HLS implementation, but
still are very close to the VHDL implementation, making the
HLS implementation a good candidate for those algorithms.

The next three figures present the precision comparison for
the three implemented methods, where as a baseline we use the
double precision floating point software implementation. As
expected the single precision floating point hardware
implementations provides higher precision compared to the
fixed-point hardware implementations. Figure 4 presents the
precision comparison for the Black-Scholes implementations.
The floating-point implementation uses single precision
operations and this is the reason for the errors compared to the
double precision software implementation. Both
implementations meet the required precision, <10-3. Figure 5
presents the precision comparison for the Black-76
implementations. The VHDL implementation, with fixed point
arithmetic, can’t meet the required precision, the specified
precision can only be met if floating point operations are
introduced to the architecture, in specific modules. The HLS
floating point implementation meet the required precision for a
small increase in the required DSPs. Finally, Figure 6 presents
the precision comparison for the Binomial implementations.
For those implementations, the accuracy results are comparable
and none implementation achieves the required accuracy, this
is mainly due to the size of the tree. For those measurements,
the largest trees that can be fit in the targeted FPGA were used,
the HDL implementation uses a 28 stages tree and the HLS
implementation a 24 stages tree. The slightly better results for
the HLS implementation are because of the floating-point
arithmetic, even with smaller binary tree.

Figure 1 Resources comparison for the Black-Scholes implementations

0

2

4

6

8

10

LUT FF DSP
VHDL Black-Scholes Utilization (%)
HLS Black-Scholes Utilization (%)

Figure 2 Resources comparison for the Black-76 implementations

0

2

4

6

8

10

LUT FF DSP
VHDL Black Utilization (%) HLS Black Utilization (%)

Figure 3 Resources comparison for the Binomial implementations

0

20

40

60

80

100

LUT FF DSP
VHDL Binomal Utilization (%) HLS Binomal Utilization (%)

Figure 4 Precision comparison for the Black-Scholes implementations

0
.0

0

0
.0

0

0
.0

0

0
.1

0

2
0

.8
8

5
1

.9
8

1
2

.6
4

2
.1

5

0
.7

5

0
.5

4

1
0

.9
6

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.3

0

3
3

.4
1

2
6

.3
3

9
.6

8

3
0

.2
8

VHDL Percentage (%) HLS Percentage (%)

 The software results, which we compare against the
hardware, are produced from a Binomial tree of 50 stages. To
achieve better accuracy the HLS implementation should utilize
a 50 stages tree, which only can be accomplished, for the
targeted FPGA, by using an architecture that is not fully parallel
and pipelined. We used the same technique as used for the
VHDL implementation, where all the nodes of the stages are
processed in parallel but more than one tree stages are processed
by the same processing elements. The new architecture resulted
by simply changing the directives used to produce the Binomial
kernel. The ‘#pragma HLS PIPELINE’ directive of the entire
system was removed because it forces the system to implement
a fully parallel and pipelined system, then the ‘#pragma HLS
UNROLL’ directive for the for-loop that produces the stages
were set to ‘#pragma HLS UNROLL factor=8’. Figure 7
presents a comparison between an HLS Binomial
implementation using a tree with 24 stages and an HLS
Binomial implementation using a tree with 50 stages. As can
been seen the 50 stages implementation achieves the required
accuracy having as trade of the extra delays required for each
stage to process the corresponding steps. The folding
implementation can process new data every 7 cycles.

VI. EVALUATION OF ACCELERATORS

The previous analysis points out the need of floating point
arithmetic for the implementation of those financial
accelerators. Also, we can see that the single precision choice
can provide the required accuracy for every kernel. The specific
algorithms are very good candidates for HLS implementations
due to their dataflow behavioral, so an HDL implementation
with floating point arithmetic won’t give a clear advantage over
the HLS implementations, considering also the development
time. The SDAccel 2016.3 tool from Xilinx was used for the
integration of the kernels to a final system. The SDAccel tool
provides a framework for the development of an entire system
consisting of a Host running on a CPU, the kernels running on
a FPGA and uses a PCIe connection for their communication.
The Host PC that was used has an Intel Core i5-4590 @
3.30GHz with 4GB RAM and CentOS 7 operating system. The
FPGA board used for the execution of the time measurements
is the Alpha Data ADM-PCIE-KU3 board, featuring a Xilinx
Kintex Ultrascale (XCKU060 - FFVA1156) FPGA.

The access of the accelerator kernels, form the Host CPU,
can be achieved by using five functions that were developed
using C++. Those functions are responsible for creating the
CPU-FPGA connection, programming the FPGA board with
the correct kernel, initializing the memories required for the
communication, sending the option values, receiving the
call/put results, destroying the link between the CPU and the
FPGA and freeing the reserved CPU resources. At the startup
of the system the initialization function must be executed once.
This function creates the device descriptors used for read/write
to the accelerator and also reserves the memory required for the
packets that are going to be communicated between the CPU
and the FPGA. This process should be avoided to run at each
call of the accelerator functions due to large execution time (6-
7 seconds). To process data with one of the accelerators, Black-
Scholes, Black-76 or Binomial the corresponding function must
be called, that transmit the data to the kernel and receives the
results. The kernels achieve higher performance when more
than one options are send to be processed, because the
overheads of the communication and the software execution is
minimized. Also, the kernels can be executed in parallel and
more options can be pipelined that increase the overall
throughput. During the execution of the accelerator’s functions

Figure 7 Precision comparison for HLS Binomial implementations of 24

and 50 stages trees

0
.0

0

0
.0

0

0
.2

1

2
4

.3
8 2

7
.2

2

1
0

.6
3

3
.7

0

9
.3

6

4
.5

8

1
.0

1

1
8

.9
1

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.3

9

2
8

.0
7

3
1

.8
8

1
3

.1
7

3
.3

8

2
3

.1
1

HLS 28 stages (%) HLS 50 stages (%)

Figure 5 Precision comparison for the Black-76 implementations

Figure 6 Precision comparison for the Binomial implementations

0
.0

0

0
.0

0

1
9

.1
9

5
6

.8
2

1
8

.1
7

3
.1

0

0
.8

7

0
.3

2

0
.2

1

0
.1

5

1
.1

8

0
.0

0

0
.0

0

0
.0

0

0
.0

0

2
7

.8
0

4
6

.5
0

7
.0

4

2
.0

9

1
.3

9

0
.7

8

1
4

.4
0

VHDL Percentage (%) HLS Percentage (%)
0

.0
0

0
.0

0

0
.1

2

2
9

.2
0 3

1
.9

5

1
5

.4
1

1
1

.2
2

0
.7

2

0
.5

6

0
.4

7

1
0

.3
5

0
.0

0

0
.0

0

0
.2

1

2
4

.3
8 2

7
.2

2

1
0

.6
3

3
.7

0

9
.3

6

4
.5

8

1
.0

1

1
8

.9
1

VHDL Percentage (%) HLS Percentage (%)

a block of data is transmitted in the FPGA board DDR RAM
memories, then the kernel stores all those values internally and
process them. When all the options are processed, the results
are transmitted to the DDR RAM memories and back to the
Host. When the system is about to be terminated or the
accelerators are no longer needed the terminating function
release the host to kernel buffers and close the device
descriptors, this process takes around 0.06ms.

The kernels for the acceleration of the Black-Scholes,
Black-76 and Binomial algorithms were implemented using
HLS C. The initial HLS implementations were used as a base
and some alterations were made to support process of ‘block’
size, by creating block RAM memories to store the option
values and the use of AXI interfaces. The kernels were used as
develop for the Vivado tool by simply adding a new layer on
the top function. Initially the kernels received option values one
after the other at each cycle, now an amount of option values
(block) are stored to block RAM memories in the FPGA, from
the DDR memories used to communicate with the host CPU.
Instead on transmitting one value at a time to the FPGA from
the CPU or the DDR memories, more values are transmitted and
stored internally in the FPGA’s block RAMs. Then those values
are introduced one after the other to the kernel for processing.
The results are stored locally to a block RAM memory and
when all the options are processed those values are transmitted
to the DDR memories and back to the host. Also, directives that
implement the Xilinx’s AXI protocol were used for the
interface of the top function. The kernel uses memory mapped
master AXI interface for the data from the DDR memories and
slave AXI Lite interface for control signals. All the kernels were
built for the specific board and tested, providing the same
accuracy results as those of the initial floating point HLS
implementations.

The Figures that follows presents the timing measurements
of the accelerators. As mentioned earlier the kernels achieve
higher performance when block of options are presented to the
system, because the overhead of the communication and the
software calls is minimized. To present this behavior we build
the kernels for various block sizes (1, 16, 256 and 4096) and
report their timing measurements. To further increase the
performance more than one parallel kernels could fit in the
FPGA and process in parallel several blocks, but for these
experiments we use only one kernel that pipelines the block
data. The Figures show the kernel execution time, the
communication time between the host and the global memory
(DDR memories of Alpha Data board), the communication time
between the kernel and the global memory and the software
execution time, for the functions used to access the accelerators
in milliseconds. The sum of those times gives the total
execution time measured. The results for the communication
and the kernel time are produced, after the execution, from the
SDAccel tool and the total execution times, that include the
software overhead, were computed using the gettimeofday()
function. A main function was developed for each accelerator
that read the option data provided by the stock exchange market
and calls the functions for the kernels. The block size represents
the amount of option data that will be transmitted to the FPGA
before the execution of the kernel, where each option data
consists of five float values (spot, strike, time, sigma, volatility)
in the cases of Black-Scholes and Binomial and six float values
in the case of Black-76, which requires an additional type for
informing if the request operation is for call or but option. The
results that is send back to the host consist from one float value
per option.

Figure 8 presents the execution and communication cost for
processing 76584 options using four different block sizes, is
obvious that as the block size increases so does the performance

Figure 8 Black-Scholes timing measurements in msec (76584 options)

Figure 9 Black-76 timing measurements in msec (74400 options)

Figure 10 Binomial timing measurements in msec (79710 options)

Block 1
Block

16
Block
256

Block
4096

software execution 45161.20 366.68 11.63 1.39

Kernel execution 1694.94 96.99 8.64 3.19

Kernel 2 DDR comm 111.64 7.18 7.14 7.14

Host 2 DDR comm 8595.94 320.64 21.14 2.48

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
sa

ge
 %

 o
f

ea
ch

 f
u

n
ct

io
n

Time in msec

Block 1
Block

16
Block
256

Block
4096

software execution 45155.09 387.72 14.80 1.06

Kernel execution 1899.02 109.22 9.38 3.63

Kernel 2 DDR comm 129.89 8.30 8.27 8.49

Host 2 DDR comm 9692.20 362.62 23.59 2.72

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
U

sa
ge

 %
 o

f
ea

ch
 f

u
n

ct
io

n

Time in msec

Block 1
Block

16
Block
256

Block
4096

software execution 49267.91 514.01 37.67 1.72

Kernel execution 11967.70 2569.45 2481.26 2539.90

Kernel 2 DDR comm 116.07 7.46 7.48 7.51

Host 2 DDR comm 9047.74 326.75 22.75 5.01

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
sa

ge
 %

 o
f

ea
ch

 f
u

n
ct

io
n

Time in msec

of the accelerator. The accelerator can process this amount of
options in 55.56 sec sending one option each time, 791.49 msec
sending 16 options each time, 48.55 msec sending 256 options
each time and 13.42 msec sending 4096 options each time. The
original software implementation can process options with
Black-Scholes at 0.06 msec, so for this amount of option the
execution time is 4.67 sec. It is clear that in this case there is no
benefit of using a hardware accelerator just for processing one
option at a time, due to the additional overheads for
communicating the data to the FPGA board. When bulk of data
are needed to be processes then a hardware accelerator can
increase the performance of the system considerably. The same
conclusions can be draw for the Black-76 algorithm, the timing
measurements are presented to the Figure 9. In this case, the
accelerator can process 74400 options in 56.88 sec sending one
option each time, 867.85 msec sending 16 options each time,
56.04 msec sending 256 options each time and 15.78 msec
sending 4096 options each time. The original software
implementation can process options with Black-76 at 0.06
msec, so for this amount of option it would take 4.69 sec. The
Binomial accelerator presents increased performance even
when a single option is transmitted, due to higher execution
time of the original algorithm in software (Figure 10). Also, we
can see an upper bound in the achieved performance as the
block size increases. This bound exist because the
implementation has recursive characteristics, as a full pipelined
50 stages tree cannot fit in the targeted FPGA. In this case the
accelerator can process 79710 options in 70.40 sec sending one
option each time, 3.42 sec sending 16 options each time, 2.55
sec sending 256 options each time and 2.55 sec sending 4096

options each time. The software implementation can process
options with Binomial at 1.23 msec, so for this amount of option
it would take 97.72 sec. Figure 11 presents the speedup achieved
from the hardware acceleration of each option pricing model for
the four different implementations. The Black-Scholes and
Black-76 accelerators can, respectively, process data up to x348
and x297 times faster than the software implementation, due to
their fully pipelined design. The Binomial accelerator, which
cannot be fully pipelined due to limited resources, can process
data up to x38 times faster than the software implementation.

CONCLUSIONS

In this paper three hardware accelerators for financial
applications were implemented using HDL and HLS. Then a
thorough performance evaluation, in terms of accuracy,
throughput and resource requirements was performed. The HDL
implementation, for those financial applications, does not
provide any clear advantage compared to the HLS
implementation, where both design languages can implement

high performance accelerators. However, the HLS can be used
to lower the design complexity and the design time. Also, from
the accuracy evaluation we conclude that floating point
arithmetic should be preferred for this type of applications.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 687628 - VINEYARD. We would like to thank
Xilinx University Program (XUP) for the kind donation of the
software tools and FPGA devices.

REFERENCES

[1] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna O. Hussaini, W. A.
Najjar, High-Level Language Tools for Reconfigurable Computing.

Proceedings of the IEEE, vol. 103, No. 3, pp. 390-408, 2015, doi

10.1109/JPROC.2015.2399275

[2] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, D. Stroobandt, An

overview of today’s high-level synthesis tools, Springer Design

Automation for Embedded Systems, vol. 16, No. 3, pp 31-51, 2012, doi

10.1007/s10617-012-9096-8

[3] N. Kapre, S. Bayliss, Survey of Domain-Specific Languages for FPGA

Computing, IEEE Proceedings of Field Programmable Logic and

Applications, pp. 1-12, 2016, doi 10.1109/FPL.2016.7577380

[4] SDAccel Development Environment User Guide, Xilinx Inc. techncial

Report, 2016

[5] Michael D. Zwagerman, High Level Synthesis, a Use Case Comparison

with Hardware Description Language, Master thesis, 2015

[6] Q. Jin, W. Luk, D. B. Thomas, On Comparing Financial Option Price
Solvers on FPGA, in IEEE International Symposium on Field-

Programmable Custom Computing Machines, pp. 89-92, 2011, doi

10.1109/FCCM.2011.30

[7] X. Tian and K. Benkrid, Design and Implementation of a High

Performance Financial Monte-Carlo Simulation Engine on an FPGA

Supercomputer, in IEEE International Conference on ICECE Technology,

pp. 81-88, 2008, doi 10.1109/FPT.2008.4762369

[8] J. Castillo, J. L. Bosque, E. Castillo, P. Huerta, J. I. Martinez, Hardware
accelerated montecarlo financial simulation over low cost FPGA cluster,
in IEEE International Symposium on Parallel & Distributed Processing,
pp. 1-8, 2009, doi 10.1109/IPDPS.2009.5161209

[9] G. W. Morris and M. Aubury, Design Space Exploration of the European
Option Benchmark using Hyperstreams, in International Conference on

Field Programmable Logic and Applications, pp. 5-10, 2007, doi

10.1109/FPL.2007.4380617

[10] G. Inggs, S. Fleming, D. Thomas and W. Luk, Is high level synthesis
ready for business? A computational finance case study, 2014
International Conference on Field-Programmable Technology (FPT),
Shanghai, pp. 12-19, 2014, doi: 10.1109/FPT.2014.7082747

[11] Christian de Schryver, FPGA Based Accelerators for Financial
Applications, Springer publications, Springer International Publishing,
2015, doi: 10.1007/978-3-319-15407-7

[12] A Klimovic, JH Anderson, Bitwidth-optimized hardware accelerators
with software fallbac, IEEE International Conference on Field-
Programmable Technology (FPT), pp. 136-143, 2013, doi
10.1109/FPT.2013.6718343

[13] F. Black and M. Scholes, The Pricing of Options and Corporate
Liabilities, Journal of Political Economy, vol. 81, No. 3, 1973, pp. 637-
654

[14] F. Black, The Pricing of Commodity Contracts, Journal of Financial
Economics, vol. 3, Issues 1-2, 1976, pp. 167-179

[15] J.C. Cox, S.A. Ross and M. Rubinstein, Option pricing: A simplified
approach, Journal of Financial Economics, vol. 7, Issue 3, 1979, pp. 229-
263

Figure 11 Accelerators Speedup

0

100

200

300

400

Block 1 Block 16 Block 256 Block 4096

Black-Scholes Black-76 Binomial

