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Abstract—Many financial applications, like the one used for 

risk valuation, need high performance and low latency 

implementations to sustain the high volume of data that need to be 

processed. This paper presents a suite of high performance 

hardware accelerators for financial applications used in risk 

valuation (Black & Scholes, Black-76 and Binomial). The 

accelerators are developed in fixed point using HDL (VHDL) and 

in floating point using HLS languages.  High Level Synthesis 

(HLS) allows fast implementation of hardware accelerators from 

the original legacy codes. The HLS hardware accelerators have 

been mapped onto a PCIe FPGA (ADM-KU3) board, through the 

Xilinx SDAccel framework and a thorough comparison in terms 

of resources, performance and accuracy has been performed. The 

performance evaluation shows that HLS can achieve higher 

accuracy due to the floating point, but requires up to 20% higher 

number of resources in terms of DSPs while the fixed-point 

implementations developed in HDL can save significant space in 

terms of resources but with limited accuracy compared to the 

software code.  

Keywords—high level synthesis; hardware accelerators; 

financial applications; reconfigurable computing 

 

I.  INTRODUCTION 

High Level Synthesis tools allow the development of 
hardware accelerators in reconfigurable logic by using high level 
languages such as C, C++ and OpenCL. The main challenging 
task of the designer is to annotate the original code with specific 
keywords that will help the tool to map the algorithm to efficient 
hardware. There are several tools that have been proposed in the 
literature for high level synthesis [1][2][3], but only few of them 
provide a complete framework where both the accelerator and 
the CPU host can be implemented and simulated as a whole 
system. SDAccel tool [4] is based on Xilinx’s HLS framework 
and provides such a framework for the development of an entire 
system. It utilizes Vivado HLS tool for the implementation of 
the hardware accelerator and uses Xilinx’s cores for the 
communication through a PCIe port with the Host system 
running on a CPU. 

In this paper, we develop efficient hardware accelerators for 
three commonly used algorithms in financial applications. These 
algorithms are developed both using hardware description 
languages VHDL and HLS based on C and the performance in 
terms of hardware resources and accuracy are measured. Overall 
the main contributions of the paper are the followings: 

• Efficient hardware architectures for three algorithms in 
financial applications for risk valuation using HDL for fixed 

point implementations and HLS for floating point 
implementations. 

• Performance evaluation of the hardware accelerators in 
terms of resources (area), performance (clock frequency) and 
accuracy compared to the software reference code. 

• A thorough comparison between HDL and HLS in 
terms of resources, throughput and accuracy.  

 
II. RELATED WORK 

In the literature, there are not many studies that implement 
the same algorithm with both HLS and HDL. In [5], a 
comparison is shown between the HLS and the hardware 
description languages for image processing. In this study, the 
HLS design was implemented in half of the time, but required 
61% more LUTs and did not perform as fast in operational 
maximum frequency tests. In [6], several financial option price 
solvers have been implemented in FPGA. That work, proposed 
a framework for comparing the performance of numerical option 
pricing methods using FPGAs, considering both speed (time to 
solution) and accuracy (quality of solution), and examines how 
the speed-accuracy trade-off curve varies for each method. The 
accelerators are designed in HDL and the main comparison is on 
the accuracy of the solvers and not the speedup that they provide. 
Several works exist that present implementations of Monte 
Carlo methods for financial services, such as [7], [8] and [9]. In 
[10], a study is performed on HLS, for financial applications, 
which shows that the HLS hardware description languages are 
mature enough to be adopted from the industry. In [11], [12], 
several architectures are shown for acceleration of financial 
applications.  

In this paper, we present a suite of high performance FPGA 
accelerators for risk valuation algorithms. The fixed-point 
implementations are implemented in VHDL utilizing less 
resources (DSP units) but with lower accuracy. The floating-
point implementations are developed using HLS achieving 
higher accuracy, but also requiring higher number of resources.  
A thorough performance evaluation is performed in terms of 
accuracy, throughput and hardware resource between these two 
implementations.  

 
III. FINANCIAL ACCELERATORS 

Automation using Technology in Trading & Exchanges is 
considered as de-facto principle nowadays. Financial 
applications require low latency and high throughput to cope 
with the demands of the market, this is the reason that the 



financial sector is a prominent user of High Performance 
Computing facilities. Implementations of hardware financial 
accelerators on reconfigurable logic are perfect candidates for 
this sector, because they can achieve those requirements through 
the use of parallelization techniques. Three commonly used 
algorithms for financial application, such as Risk Valuation, are 
Black-Scholes, Black-76 and Binomial algorithms. The Black-
Scholes model gives a theoretical estimate of the price of 
European-style options and can also be used for American-style 
call options. The Black-76 model is a variant of the Black-
Scholes model that supposes the underlying is lognormal but the 
underlying price is the future prices, not the spot price. The 
Binomial option pricing model discretize time and price of an 
underlying asset, and mapping both onto a binary tree, thus can 
handle American put options that can be exercised at any time. 
In this paper, we investigate those three algorithms: 

• The Black & Scholes method for American call options 
based on spot prices for stock options. 

• The Black-76 method for European options based on 
future prices for index options.  

• The Binomial method, without dividends, for 
American put options based on spot prices for stock options. 

A. Black-Scholes model 

The Black-Scholes model [13], for the current prices of a 
European options on a non-dividend paying stock, can be 
calculated from equation (1) for the call option and from 
equation (2) for the put option. When no early exercise is 
required, an American call option can use the same equation (1) 
as the European options. 

                     𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2)          (1) 

  𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1) = 𝑐 + 𝐾𝑒−𝑟𝑇 − 𝑆0   (2) 

Where   𝑑1 =
ln(𝑆0 𝐾⁄ )+(𝑟+𝜎2 2⁄ )𝑇

𝜎√𝑇
    and  

              𝑑2 =
ln(𝑆0 𝐾⁄ )+(𝑟−𝜎2 2⁄ )𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇 

In the equations, N(.) represents the cumulative distribution 
function of the standard normal distribution, S0 represents the 
Stock price at t=0 (spot price), K represents the Strike price, r 
represents the Risk-free interest rate, σ represents the Stock 
price volatility and T represents the Time to maturity.  

An algorithmic analysis was conducted considering a 
pipelined architecture that can receive new input per cycle. 
More kernels can run in parallel to process blocks of data for 
increase in the performance of the system. Table 1 presents the 
required operations for the Black-Scholes method. If both call 
and put options are needed some operations can be used for both 
calculations, with bold are the extra operations required if no 
call option is going to be implemented. In the following 
hardware implementations only the call option was 
implemented, that can be used with American-type options. 

 

B. Black-76 model 

The Black-76 model [14] is a variant of the Black-Scholes 
option pricing model and can be used for pricing options on 
future contracts, bond options, interest rate caps/floors and 
swaptions. The call option is calculated using the equation (3) 
and the put option from the equation (4). 

                     𝑐 = 𝑒−𝑟𝑇(𝐹𝑁(𝑑1) − 𝑋𝑁(𝑑2))                   (3) 

   𝑝 = 𝑒−𝑟𝑇(𝑋𝑁(−𝑑2) − 𝐹𝑁(−𝑑1)) = 𝑐 + 𝑒−𝑟𝑇(𝑋 − 𝐹)    (4) 

Where 𝑑1 =
ln(𝐹 𝑋⁄ )+(𝜎2 2⁄ )𝑇

𝜎√𝑇
    and    𝑑2 = 𝑑1 − 𝜎√𝑇 

In the equations, F represents the Future price, X represents 
the Exercise price, σ represents the future price volatility and 
the rest are the same as those of the Black-Scholes model.  

An algorithmic analysis was also conducted considering a 
pipelined architecture that can receive new input per cycle. 
More kernels can run in parallel to process blocks of data for 
increased performance. Table 2 presents the required operations 
for the Black method. Bold number represent again the extra 
operations needed if no call options are going to be computed. 
Both call and put options were required and implemented for 
the pricing of the index options on future prices. 

 

C. Binomial model 

The Binomial pricing model [15] traces the evolution of the 
options underlying variables in discrete time by generate a 
binomial tree for a number of time steps until maturity. Each 
node of the binomial tree represents a possible price at a given 
point in time and the final nodes calculates the option values of 
their preceding nodes. Each node has two possible transitions, 
upwards (increase value) and downwards (decrease value). The 
call price at each node is calculated from the equation (5), the 
put price at each node from the equation (6), the terminal call 
price from the equation (7) and the terminal put option from the 
equation (8).   

    𝐶𝑖,𝑗 = 𝑀𝑎𝑥(𝑆𝑖,𝑗 − 𝐾, 𝑒−
𝑟𝑡

𝑛 (𝑝𝐶𝑖,𝑗+1 + (1 − 𝑝)𝐶𝑖+1,𝑗+1))     (5)  

     𝑃𝑖,𝑗 = 𝑀𝑎𝑥(𝐾 − 𝑆𝑖,𝑗 , 𝑒−
𝑟𝑡

𝑛 (𝑝𝑃𝑖,𝑗+1 + (1 − 𝑝)𝑃𝑖+1,𝑗+1))    (6) 

                       𝐶𝒊,𝑛 = 𝑀𝑎𝑥(𝑆𝑖,𝑛 − 𝐾, 0)                            (7) 

                       𝑃𝒊,𝒏 = 𝑀𝑎𝑥(𝐾 − 𝑆𝑖,𝑛 , 0)                            (8) 

Where 𝑆𝑖,𝑗 = 𝑆0𝑢𝑗−1𝑑𝑖−1, i, j: 0, …, n is the stock price at 

each node, 𝑢 = 𝑒𝜎√𝑡 𝑛⁄   is the increased factor, 𝑑 = 𝑒−𝜎√𝑡 𝑛⁄ =
1

𝑢
 is the decreased factor, 𝑝 = (𝑒𝑟𝑡 𝑛⁄ − 𝑑) (𝑢 − 𝑑)⁄  is the 

probability of upward move and (1-p) is the probability of down 
move. The model that was used and implemented does not 
consider dividends. S0 represents the Stock price at t=0, and the 
rest are the same as those of the Black-Scholes model. 

Table 1 Algorithmic analysis of the Black-Scholes model (no reuse of 

operations) 

 Calc. 

d1, d2 

Approx. 

N(.) 

Calc. 

Call 

Calc. 

Put 
Sum 

Add/Sub 3 6 1 2/1 12 

Multiplier 3 9 4 4 16 

Divider 2 1 0 0 3 

Square root 1 0 0 0 1 

Exponential 0 1 1 1 2 

Logarithm (ln) 1 0 0 0 1 

 

Table 2 Algorithmic analysis of the Black-76 model (no reuse of 
operations) 

 Calc. 

d1, d2 

Approx. 

N(.) 

Calc. 

Call 

Calc. 

Put 
Sum 

Add/Sub 2 6 1 2/1 11 

Multiplier 3 9 4 1/4 17 

Divider 2 1 0 0 3 

Square root 1 0 0 0 1 

Exponential 0 1 1 1 2 

Logarithm (ln) 1 0 0 0 1 

 



For the algorithmic analysis, a full parallel and pipelined 
architecture with N parametric tree stages that can receive new 
input per cycle was considered. Table 3 presents the required 
operations for the Binomial method. In the following hardware 
implementations, only the put option was implemented, that 
was required for the American options. 

 

IV. HARDWARE IMPLEMENTATION OF THE ALGORITHMS 

A. Black-Scholes implementation 

The Black-Scholes model was initially implemented using 
VHDL in fixed point arithmetic. A straight forward, fully 
pipelined design with parallelization at the operations was 
adopted. Figure 1 presents the architecture of the Black-Scholes 
model where each stage is pipelined. The divider is fully 
pipelined with stages equal to the amount of dividend bits and 
the multipliers uses DSP blocks with 4 stage pipelines for better 
performance of the overall system. Due to large word length, 
more than one DSP are required for each multiplication. The 
ln(.) and exp(.) functions were approximated with Taylor series. 
The N(.) function was approximated using a polynomial 
function with 6 decimal places accuracy, according to the one 

used at the original software implementation. All three functions 
are fully parallel and pipelined. The required Black-Scholes 
input accuracy is at 5 integer digit and 2 fractional digit for S0 
and K variables and at 1 integer digit and 2 fractional digit for T, 
r and σ variables. For the fixed-point implementation 18.15 bit 
was used for S0 and K and 2.15 bit for T, r and σ inputs. The 
implementation of the Black-Scholes kernel is parameterized at 
the fractional part that must be common for all inputs, the integer 
part and the amount of the pipeline levels used inside the 
multiplications, currently at 4 level for achieving higher 
frequency. The exponent component supports values only at the 
[-11, 11] field, higher value support was removed for lower 
resources requirements.  

The Black-Scholes model was also implemented using HLS 
in floating point single precision arithmetic. The C code was 
described in a way that enables the tool to produce a design 
closer to the described architecture. The algorithm was divided 
in 3 functions, the calculation of the d1 and d2, the calculation of 
the cumulative distribution function and the calculation of the 
call value, similar to the basic modules of the VHDL 
implementation. Also, each operation was stored in different 
variable throughout the algorithm that produced better results 
closer to those of the HDL implementation. The directive used 
from Vivado was ‘#pragma HLS PIPELINE’ in each function 
including the top. Both implementations target the Xilinx Kintex 
UltraScale XCKU060 FPGA, with clock constraint at 4 ns. HDL 
implementation achieved 3.81 ns period and HLS 
implementation achieved 3.61 ns period with comparable 
throughputs. 

B. Black-76 implementation 

The Black-76 model was initially implemented using 
VHDL in fixed point arithmetic. Again, a straight forward, fully 
pipelined design with parallelization at the operations was 
adopted. Figure 2 presents the architecture of the Black-76 
method where each stage is pipelined. The implementation uses 
the same internal modules that were created for the Black-
Scholes method. The required Black-76 input accuracy is at 5 
integer digit and 2 fractional digit for F and X variables and at 
1 integer digit and 2 fractional digit for T, r and σ variables. For 
the fixed-point implementation 18.18 bit was used for F and X 
and 2.18 bit for T, r and σ inputs. Higher word length, than the 
Black-Scholes kernel, was used due to higher need of accuracy 
in the internal operations. The implementation of the Black-76 
kernel is parameterized at the fractional part that must be 
common for all inputs, the integer part and the amount of the 
pipeline levels used inside the multiplications, currently at 4 
level for achieving higher frequency. The exponent component 
supports values only at the [-11, 11] field, higher value support 
was removed for lower resources requirements.  

The Black-76 model was also implemented using HLS in 
floating point single precision arithmetic. The C code was again 
described in a way that enables the tool to produce a design 
closer to the described architecture. The algorithm was again 
divided in 3 functions, the calculation of the d1 and d2, the 
calculation of the cumulative distribution function and the 
calculation of the call value, similar to the basic modules of the 
VHDL implementation. The directive used from Vivado was 
‘#pragma HLS PIPELINE’ in each function including the top. 
Both implementations target the Kintex UltraScale XCKU060 
FPGA. For the HDL implementation, a clock constraint at 4.5ns 
was used and achieved 4.22 ns period, due to larger word 
length. This was the first indication that floating point 
arithmetic is required for those applications. The HLS 

Table 3 Algorithmic analysis of the Binomial model (no reuse of 
operations) 

 Init. 

Steps 

Up/ 

Down 

Calc. 
Call 

Calc. Put Sum 

Add/Sub 3 0 

N+ 

2[(N-1)2-
(N-1)(N-2)

2
] 

N+ 

2[(N-1)2-
(N-1)(N-2)

2
] 

2N+ 

4[(N-1)2-
(N-1)(N-2)

2
]+3 

Multiplier 3 N-1 
2[(N-1)2-
(N-1)(N-2)

2
] 

2[(N-1)2-
(N-1)(N-2)

2
] 

3N+ 

4[(N-1)2-
(N-1)(N-2)

2
]+2 

Divider 2 N-1 0 0 N+1 

Square root 1 0 0 0 1 

Exponential 2 0 0 0 2 

 

 
Figure 1 Architecture for the Black-Scholes method 
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implementation achieves comparable throughput as the HDL 
implementation, with clock constraint at 4ns and achieved at 
3.66 ns.  

C. Binomial implementation 

The Binomial model was initially implemented using VHDL 
in fixed point arithmetic. A fully pipelined design was also 
adopted, with the ability of folding the binary tree for lower 
hardware requirements. When folding is used the same 
Processing Elements (PEs) of a tree stage can process more than 
one stage of the tree, in expense of extra delays. Figure 3 
presents the architecture of the Binomial method that supports 
parametric tree depth N and was implemented to minimize the 
required DSPs. The architecture is designed to be fully pipelined 
so new input at each cycle can be received, when no folding is 
used. The implementation uses the same internal modules that 
were created for the previous methods. All values that are 
generated from ascending the tree are computed first, before 
acceding the PEs of the tree and stored to registers that are 
buffered for better performance. The descendant of the tree is 
processed in the tree PEs. To support larger trees or smaller 
FPGA devices the design also support parametric folding, the 
ability to use the same PEs of one level to process more steps of 
the tree. The required Binomial input accuracy is at 5 integer 
digit and 2 fractional digits for S0 and K variables and at 1 integer 
digit and 2 fractional digits for T, r and σ variables. For the fixed-
point implementation 18.15 bit was used for S0 and K and 2.15 
bit for T, r and σ inputs. The implementation of the Binomial 
kernel is also parameterized at the fractional part that must be 
common for all inputs, the integer part, the amount of the 
pipeline levels used inside the multiplications, currently at 4 
level for achieving higher frequency, the tree depth to be used 
and the folding factor. The exponent component supports values 
only at the [-2, 2] field, higher value support was removed for 
lower resources requirements.  

The Binomial model was also implemented using HLS in 
floating point single precision arithmetic. The C code was 

described in a way to that enable the tool to produce a design 
closer to the described architecture. Each operation was stored 
in different variable throughout the algorithm that produced 
better results closer to those of the HDL implementation. The 
directives used from Vivado was ‘#pragma HLS PIPELINE’ for 
the entire design, ‘#pragma HLS UNROLL’ for the FOR 
statements and ‘#pragma HLS ARRAY_PARTITION 
variable=Stock dim=1’ for the arrays used to store internal 
values. The HLS implementation achieves comparable 
throughput as the HDL implementation for the same Xilinx 
Kintex UltraScale FPGA, with clock constraint at 4ns. HDL 
implementation achieved 3.96 ns period and HLS 
implementation achieved 4.43 ns period. 

V. SYSTEM EVALUATION 

In this section, we compare, in terms of resources 
requirements and achieved precision, the VHDL and the HLS 
implementations for each of the three algorithms, Black-
Scholes, Black-76 and Binomial. As mentioned in previous 
sections the VHDL implementation uses fixed point arithmetic 
and the HLS implementation uses floating point arithmetic. So, 
in our analysis we also consider the different arithmetic that 
those two types of implementation utilize. The utilizations 
presented in the following figures are for the Xilinx Kintex 
UltraScale FPGA and the precision was measured using the 
input data provided by the original software implementation.  

The first three figures present the resources requirements 
comparison for the three implemented methods. Figure 1 
presents the resources comparison for the Black-Scholes 

 
Figure 2 Architecture for the Black method 
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Figure 3 Architecture for the Binomial method (Folding x1 top, Folding 
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implementations. The requirements for the VHDL 
implementation are lower compared to the HLS 
implementation, except in the case of the required Flip-Flops. 
The increased resources requirements are mainly due to the 
floating-point arithmetic used in the HLS implementation, 
especially for the DSP blocks. So, we can see that the HLS 
implementation does not add extra overhead for this type of 
applications. We would expect to see comparable requirements 
if we had a floating-point HDL implementation. Figure 2 
presents the resources comparison for the Black-76 
implementations. In this case, the requirements for the VHDL 
implementation are higher compared to the HLS 
implementation, except in the case of the required DSPs. This 
algorithm required larger word lengths to achieve better 
precision. The word length is so large in some modules that it 
is preferred the use of floating point operations. The extra DSP 

blocks that are required in the HLS implementation, can again 
be attributed to the floating-point arithmetic. Figure 3 presents 
the resources comparison for the Binomial implementations. In 
this case, the requirements for the VHDL implementation is 
also higher for LUTs and lower for Flip-Flops and DSPs 
compared to the HLS implementation. At this point we should 
point out that both implementations are for a Binomial tree with 
24 stages depth, which is the largest tree size that can fit to the 
targeted FPGA when produced from the HLS design. The HDL 
design can produce up to 28 full pipelined stages tree for the 
targeted FPGA. No folding was considered for either 
implementation. In general, we can see that the DSP 
requirements are always grater for the HLS implementation, but 
still are very close to the VHDL implementation, making the 
HLS implementation a good candidate for those algorithms.  

The next three figures present the precision comparison for 
the three implemented methods, where as a baseline we use the 
double precision floating point software implementation. As 
expected the single precision floating point hardware 
implementations provides higher precision compared to the 
fixed-point hardware implementations. Figure 4 presents the 
precision comparison for the Black-Scholes implementations. 
The floating-point implementation uses single precision 
operations and this is the reason for the errors compared to the 
double precision software implementation. Both 
implementations meet the required precision, <10-3. Figure 5 
presents the precision comparison for the Black-76 
implementations. The VHDL implementation, with fixed point 
arithmetic, can’t meet the required precision, the specified 
precision can only be met if floating point operations are 
introduced to the architecture, in specific modules. The HLS 
floating point implementation meet the required precision for a 
small increase in the required DSPs. Finally, Figure 6 presents 
the precision comparison for the Binomial implementations. 
For those implementations, the accuracy results are comparable 
and none implementation achieves the required accuracy, this 
is mainly due to the size of the tree. For those measurements, 
the largest trees that can be fit in the targeted FPGA were used, 
the HDL implementation uses a 28 stages tree and the HLS 
implementation a 24 stages tree. The slightly better results for 
the HLS implementation are because of the floating-point 
arithmetic, even with smaller binary tree. 

 

 
Figure 1 Resources comparison for the Black-Scholes implementations 
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Figure 2 Resources comparison for the Black-76 implementations 
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Figure 3 Resources comparison for the Binomial implementations 
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 The software results, which we compare against the 
hardware, are produced from a Binomial tree of 50 stages. To 
achieve better accuracy the HLS implementation should utilize 
a 50 stages tree, which only can be accomplished, for the 
targeted FPGA, by using an architecture that is not fully parallel 
and pipelined. We used the same technique as used for the 
VHDL implementation, where all the nodes of the stages are 
processed in parallel but more than one tree stages are processed 
by the same processing elements. The new architecture resulted 
by simply changing the directives used to produce the Binomial 
kernel. The ‘#pragma HLS PIPELINE’ directive of the entire 
system was removed because it forces the system to implement 
a fully parallel and pipelined system, then the ‘#pragma HLS 
UNROLL’ directive for the for-loop that produces the stages 
were set to ‘#pragma HLS UNROLL factor=8’. Figure 7 
presents a comparison between an HLS Binomial 
implementation using a tree with 24 stages and an HLS 
Binomial implementation using a tree with 50 stages. As can 
been seen the 50 stages implementation achieves the required 
accuracy having as trade of the extra delays required for each 
stage to process the corresponding steps. The folding 
implementation can process new data every 7 cycles. 

  

VI. EVALUATION OF ACCELERATORS 

The previous analysis points out the need of floating point 
arithmetic for the implementation of those financial 
accelerators. Also, we can see that the single precision choice 
can provide the required accuracy for every kernel. The specific 
algorithms are very good candidates for HLS implementations 
due to their dataflow behavioral, so an HDL implementation 
with floating point arithmetic won’t give a clear advantage over 
the HLS implementations, considering also the development 
time. The SDAccel 2016.3 tool from Xilinx was used for the 
integration of the kernels to a final system. The SDAccel tool 
provides a framework for the development of an entire system 
consisting of a Host running on a CPU, the kernels running on 
a FPGA and uses a PCIe connection for their communication. 
The Host PC that was used has an Intel Core i5-4590 @ 
3.30GHz with 4GB RAM and CentOS 7 operating system. The 
FPGA board used for the execution of the time measurements 
is the Alpha Data ADM-PCIE-KU3 board, featuring a Xilinx 
Kintex Ultrascale (XCKU060 - FFVA1156) FPGA.  

The access of the accelerator kernels, form the Host CPU, 
can be achieved by using five functions that were developed 
using C++. Those functions are responsible for creating the 
CPU-FPGA connection, programming the FPGA board with 
the correct kernel, initializing the memories required for the 
communication, sending the option values, receiving the 
call/put results, destroying the link between the CPU and the 
FPGA and freeing the reserved CPU resources. At the startup 
of the system the initialization function must be executed once. 
This function creates the device descriptors used for read/write 
to the accelerator and also reserves the memory required for the 
packets that are going to be communicated between the CPU 
and the FPGA. This process should be avoided to run at each 
call of the accelerator functions due to large execution time (6-
7 seconds). To process data with one of the accelerators, Black-
Scholes, Black-76 or Binomial the corresponding function must 
be called, that transmit the data to the kernel and receives the 
results. The kernels achieve higher performance when more 
than one options are send to be processed, because the 
overheads of the communication and the software execution is 
minimized. Also, the kernels can be executed in parallel and 
more options can be pipelined that increase the overall 
throughput. During the execution of the accelerator’s functions 

 
Figure 7 Precision comparison for HLS Binomial implementations of 24 

and 50 stages trees 
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Figure 5 Precision comparison for the Black-76 implementations 

 
Figure 6 Precision comparison for the Binomial implementations 
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a block of data is transmitted in the FPGA board DDR RAM 
memories, then the kernel stores all those values internally and 
process them. When all the options are processed, the results 
are transmitted to the DDR RAM memories and back to the 
Host. When the system is about to be terminated or the 
accelerators are no longer needed the terminating function 
release the host to kernel buffers and close the device 
descriptors, this process takes around 0.06ms. 

The kernels for the acceleration of the Black-Scholes, 
Black-76 and Binomial algorithms were implemented using 
HLS C. The initial HLS implementations were used as a base 
and some alterations were made to support process of ‘block’ 
size, by creating block RAM memories to store the option 
values and the use of AXI interfaces. The kernels were used as 
develop for the Vivado tool by simply adding a new layer on 
the top function. Initially the kernels received option values one 
after the other at each cycle, now an amount of option values 
(block) are stored to block RAM memories in the FPGA, from 
the DDR memories used to communicate with the host CPU. 
Instead on transmitting one value at a time to the FPGA from 
the CPU or the DDR memories, more values are transmitted and 
stored internally in the FPGA’s block RAMs. Then those values 
are introduced one after the other to the kernel for processing. 
The results are stored locally to a block RAM memory and 
when all the options are processed those values are transmitted 
to the DDR memories and back to the host. Also, directives that 
implement the Xilinx’s AXI protocol were used for the 
interface of the top function. The kernel uses memory mapped 
master AXI interface for the data from the DDR memories and 
slave AXI Lite interface for control signals. All the kernels were 
built for the specific board and tested, providing the same 
accuracy results as those of the initial floating point HLS 
implementations.  

The Figures that follows presents the timing measurements 
of the accelerators. As mentioned earlier the kernels achieve 
higher performance when block of options are presented to the 
system, because the overhead of the communication and the 
software calls is minimized. To present this behavior we build 
the kernels for various block sizes (1, 16, 256 and 4096) and 
report their timing measurements. To further increase the 
performance more than one parallel kernels could fit in the 
FPGA and process in parallel several blocks, but for these 
experiments we use only one kernel that pipelines the block 
data. The Figures show the kernel execution time, the 
communication time between the host and the global memory 
(DDR memories of Alpha Data board), the communication time 
between the kernel and the global memory and the software 
execution time, for the functions used to access the accelerators 
in milliseconds. The sum of those times gives the total 
execution time measured. The results for the communication 
and the kernel time are produced, after the execution, from the 
SDAccel tool and the total execution times, that include the 
software overhead, were computed using the gettimeofday() 
function. A main function was developed for each accelerator 
that read the option data provided by the stock exchange market 
and calls the functions for the kernels. The block size represents 
the amount of option data that will be transmitted to the FPGA 
before the execution of the kernel, where each option data 
consists of five float values (spot, strike, time, sigma, volatility) 
in the cases of Black-Scholes and Binomial and six float values 
in the case of Black-76, which requires an additional type for 
informing if the request operation is for call or but option. The 
results that is send back to the host consist from one float value 
per option. 

Figure 8 presents the execution and communication cost for 
processing 76584 options using four different block sizes, is 
obvious that as the block size increases so does the performance 

 
Figure 8 Black-Scholes timing measurements in msec (76584 options) 

 
Figure 9 Black-76 timing measurements in msec (74400 options) 

 
Figure 10 Binomial timing measurements in msec (79710 options) 

Block 1
Block

16
Block
256

Block
4096

software execution 45161.20 366.68 11.63 1.39

Kernel execution 1694.94 96.99 8.64 3.19

Kernel 2 DDR comm 111.64 7.18 7.14 7.14

Host 2 DDR comm 8595.94 320.64 21.14 2.48

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
sa

ge
 %

 o
f 

ea
ch

 f
u

n
ct

io
n

Time in msec

Block 1
Block

16
Block
256

Block
4096

software execution 45155.09 387.72 14.80 1.06

Kernel execution 1899.02 109.22 9.38 3.63

Kernel 2 DDR comm 129.89 8.30 8.27 8.49

Host 2 DDR comm 9692.20 362.62 23.59 2.72

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
U

sa
ge

 %
 o

f 
ea

ch
 f

u
n

ct
io

n

Time in msec

Block 1
Block

16
Block
256

Block
4096

software execution 49267.91 514.01 37.67 1.72

Kernel execution 11967.70 2569.45 2481.26 2539.90

Kernel 2 DDR comm 116.07 7.46 7.48 7.51

Host 2 DDR comm 9047.74 326.75 22.75 5.01

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
sa

ge
 %

 o
f 

ea
ch

 f
u

n
ct

io
n

Time in msec



of the accelerator. The accelerator can process this amount of 
options in 55.56 sec sending one option each time, 791.49 msec 
sending 16 options each time, 48.55 msec sending 256 options 
each time and 13.42 msec sending 4096 options each time. The 
original software implementation can process options with 
Black-Scholes at 0.06 msec, so for this amount of option the 
execution time is 4.67 sec. It is clear that in this case there is no 
benefit of using a hardware accelerator just for processing one 
option at a time, due to the additional overheads for 
communicating the data to the FPGA board. When bulk of data 
are needed to be processes then a hardware accelerator can 
increase the performance of the system considerably. The same 
conclusions can be draw for the Black-76 algorithm, the timing 
measurements are presented to the Figure 9. In this case, the 
accelerator can process 74400 options in 56.88 sec sending one 
option each time, 867.85 msec sending 16 options each time, 
56.04 msec sending 256 options each time and 15.78 msec 
sending 4096 options each time. The original software 
implementation can process options with Black-76 at 0.06 
msec, so for this amount of option it would take 4.69 sec. The 
Binomial accelerator presents increased performance even 
when a single option is transmitted, due to higher execution 
time of the original algorithm in software (Figure 10). Also, we 
can see an upper bound in the achieved performance as the 
block size increases. This bound exist because the 
implementation has recursive characteristics, as a full pipelined 
50 stages tree cannot fit in the targeted FPGA. In this case the 
accelerator can process 79710 options in 70.40 sec sending one 
option each time, 3.42 sec sending 16 options each time, 2.55 
sec sending 256 options each time and 2.55 sec sending 4096 

options each time. The software implementation can process 
options with Binomial at 1.23 msec, so for this amount of option 
it would take 97.72 sec. Figure 11 presents the speedup achieved 
from the hardware acceleration of each option pricing model for 
the four different implementations. The Black-Scholes and 
Black-76 accelerators can, respectively, process data up to x348 
and x297 times faster than the software implementation, due to 
their fully pipelined design. The Binomial accelerator, which 
cannot be fully pipelined due to limited resources, can process 
data up to x38 times faster than the software implementation. 

CONCLUSIONS 

In this paper three hardware accelerators for financial 
applications were implemented using HDL and HLS. Then a 
thorough performance evaluation, in terms of accuracy, 
throughput and resource requirements was performed. The HDL 
implementation, for those financial applications, does not 
provide any clear advantage compared to the HLS 
implementation, where both design languages can implement 

high performance accelerators. However, the HLS can be used 
to lower the design complexity and the design time. Also, from 
the accuracy evaluation we conclude that floating point 
arithmetic should be preferred for this type of applications. 
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