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Abstract—In-vivo and in-vitro experiments are routinely used
in neuroscience to unravel brain functionality. Although they are
a powerful experimentation tool, they are also time-consuming
and, often, restrictive. Computational neuroscience attempts
to solve this by using biologically-plausible and biophysically-
meaningful neuron models, most prominent among which are the
conductance-based models. Their computational complexity calls
for accelerator-based computing to mount large-scale or real-
time neuroscientific experiments. In this paper, we analyze and
draw conclusions on the class of conductance models by using a
representative modeling application of the inferior olive (InfOli),
an important part of the olivocerebellar brain circuit. We conduct
an extensive profiling session to identify the computational and
data-transfer requirements of the application under various
realistic use cases. The application is, then, ported onto two
acceleration nodes, an Intel Xeon Phi and a Maxeler Vectis Data
Flow Engine (DFE). We evaluate the performance scalability
and resource requirements of the InfOli application on the two
target platforms. The analysis of InfOli, which is a real-life
neuroscientific application, can serve as a useful guide for porting
a wide range of similar workloads on platforms like the Xeon Phi
or the Maxeler DFEs. As accelerators are increasingly populating
High-Performance Computing (HPC) infrastructure, the current
paper provides useful insight on how to optimally use such nodes
to run complex and relevant neuron modeling workloads.

I. INTRODUCTION

For decades, scientists have been fascinated by the methods
and computational capabilities of the biological brain. The US
National Academy of Engineers has listed the simulation of the
human brain as one of the Grand Engineering Challenges [1].
Inspired by the scientific effort, engineers began to copy
computational concepts found in the brain, which led to the
creation of the first Artificial Neural Networks (ANNs) with
the creation of the perceptron [2]. ANNs do not execute com-
mands sequentially like the typical Von Neumann computer,
but each node (or neuron) in a neural network is a separate
set of functions and they are all evaluated concurrently during
execution. The relation between input and output is defined
largely by the network size, topology and interconnectivity of
the neurons. Interconnectivity could eventually be adaptive,
thus, mimicking the behavior of biological systems.

Eventually, more advanced versions of neural-network mod-
els were developed, based upon greater understanding of the
biological processes. Spiking Neural Networks (SNNs) [3] do
not abstractly mimic biological-neuron behavior but outright
simulate the computational behavior of brain processes. True

to their biological counterparts, SNNs have the ability to
encode information using the transfer rate, amplitude and
spike-train patterns, which gives them more capabilities than
traditional ANNs [4], [5]. As a result, they are currently
heavily used to model the complex behavior of biological-
brain systems in neuroscientific research.

In-vivo and in-vitro experiments are a traditional and pow-
erful experimentation tool for neuroscience, however they are
typically time-consuming while there is always the possibility
of the experimental data to become contaminated (from factors
such as the effects of anesthesia). Many of the complex brain-
system dynamics that define biological behavior are hypothe-
sized and many in-vivo or in-vitro techniques are not always
able to provide the means to validate them. Computational
neuroscience attempts to use SNN models of various com-
plexities the accuracy of which can provide predictive behavior
and insight on those hypothesized dynamics and can exploit
them to guide further biological experiments. Long-term ad-
vancement in computational neuroscience can hopefully lead
to improved medical treatment of brain-related health issues,
novel artificial-intelligence applications and groundbreaking
computer architectures.

The main challenge with this type of modeling is that
the models used typically have great computational or data-
transfer demands. In the meantime, it is only through large-
scale network sizes and/or real-time simulation that biological
dynamics can be properly modeled for certain types of exper-
imentation (e.g. Brain-Machine Interfaces). This is especially
the case for advanced, biophysically-meaningful neuron mod-
els [6]. In any case, traditional execution of such models on
CPUs with generic programming suites (such as MATLAB)
or neuromodeling-specific languages (like NEURON or GEN-
ESIS), could take a prohibitive amount of time to complete.
The introduction of accelerator-based computing solutions in
neuroscience can substantially accelerate the research efforts.
Given the advent of accelerators in modern High Performance
Computing (HPC) infrastructure, it is imperative that such
applications are well understood, especially in the context of
the accelerating platforms that are utilized. Additionally, as
these applications are to be used in scientific research that is
very dynamic and many times conducted by non-HPC experts,
the goal should not be to over-optimize them, but keeping the
programming effort moderate, resulting to short development
times, while providing sufficient performance.



In this paper we analyze a class of detailed, brain-modeling
applications, known as conductance-based or Hodgkin-Huxley
(HH) models. We use a state-of-the-art, biologically meaning-
ful model of the inferior-olive nucleus (InfOli). We isolate 3
realistic use cases for the target application, capturing the most
representative instantiations of HH neuron modeling workload.
Before delving into the accelerator platforms, we start with
a general, platform-independent analysis of the application.
Then, the InfOli use cases are ported and evaluated on two
accelerators: a many-core processor and a data flow engine
(DFE). To the best of our knowledge, this work is the first
to attempt a characterization of the class of HH models on
state-of-the-art accelerator computing fabrics.

• We define three InfOli-application use cases that reveal
different aspects of HH-model requirements and represent
realistic cases for neuroscientific computing workloads.

• We perform a detailed performance and scalability eval-
uation on two state-of-the-art accelerating platforms: an
Intel Xeon Phi and a Maxeler Vectis Data-Flow Engine
(DFE).

• We compare and contrast the two platforms, in view of
the three InfOli workloads considered and comment on
the suitability and usability of each accelerator.

The paper is organized as follows: Section II offers a
general background on neural modeling, covering types of
SNNs that are widely used in computational neuroscience. In
Section III, related prior art is discussed. Section IV contains a
detailed description of the InfOli model and the three use cases
that we explore in this paper. Section V describes the target
acceleration platforms and the InfOli implementation details
on each one. Section VI presents performance measurements
from the target platforms. In Section VII a brief discussion on
the results is given. Finally, in Section VIII, conclusions are
summarized.

II. NEURAL MODELING BACKGROUND

Neuroscientific SNN models vary in complexity and com-
putational/communication demands. The best choice of SNN
model depends on the targeted accuracy level and the available
execution platform [6]. There are three main categories of
SNNs: (A) Integrate & Fire models, (B) Izhikevich models,
and (C) Conductance(-based) models.

The simplest version of SNNs are Integrate-and-Fire (I&F)
models. They emulate the most basic operation of a biological
neuron, which is the integration of spikes and firing using a
threshold mechanism. From this most basic version, extensions
are derived which add more features to the model’s behav-
ior such as the Leaky I&F, I&F-or-Burst [7] and quadratic
I&F [8]. I&F models have extremely low computational de-
mands but also have very limited biological plausibility. They
are, thus, useful for exploring large-scale network dynamics in
relation to the very basic features they can emulate. Izhikevich
neurons [9] are a special type of models which – even though
they have similar complexity to I&F models – emulate an im-
pressive fraction of the biological-neuron behavior. This model
boasts the capability of emulating all possible input/output
spiking activity found in its biological counterpart. Although

it treats the neuron as a black box, its flexibility permits
to create very accurate high-level representations of large-
scale, biological-neural-network behavior. If, on the other
hand, a researcher seeks to explore the electrochemical char-
acteristics that produce the neuron’s response, they require a
biophysically-meaningful neuron model, such as Conductance
models. These are the simplest biophysical representations of a
neural cell. They capture closely the electrochemical behavior
that produces the neuron activity by modeling the various ion
channels observed in biological neurons. The most important
conductance-based model is the one presented by Hodgkin
and Huxley (HH) in 1952 [9]. HH models make heavy use of
differential equations and are quite scalable, making the design
of multi-compartmental models possible (the term “compart-
ment” is used for the distinct parts of an accurate white-
box neuron representation). The computational complexity of
conductance-based models is orders-of-magnitude higher than
that of the previously mentioned types, posing a significant
challenge for their efficient simulation.

III. RELATED WORK

A growing volume of prior art attempts to port complex
models, such as SNNs, onto a variety of platforms. However,
biophysically meaningful implementations of conductance
models have a limited presence in bibliography, especially for
accelerator-based fabrics, such as the ones used in this paper.
A notable attempt for real-time cerebellum simulations using
I&F models has been proposed by Yamazaki et al. [10] using
GPUs. This work, however, uses non-biophysically meaningful
modeling for the cerebellar circuit, lacking many of the
intricate details of the biological processes leading to the usage
of black boxes within the modeling structure. Additionally for
HH models, GPU implementations have been shown to be less
efficient compared to reconfigurable hardware solutions [11],
[12], even though providing notable speedups [13].

The Xeon-Phi platform [14] is very recent, thus, its ca-
pabilities for SNNs’ or similar applications’ simulation and
acceleration are not widely explored yet. A promising use
reported in the bibliography has been the incorporation of
the Phi for convolutional neural networks (CNN) [15], [16].
These however, are artificial neural networks and, are not
representing real biological systems. An attempt has also been
documented for the porting of HH-based neuron models on a
research-grade many-core chip [17].

On the side of reconfigurable hardware, most works have
concentrated on porting simpler I&F or Izhikevich models(
[18], [19]). Moreover, most conductance models accelerated
in reconfigurable platforms employ fixed-point arithmetic,
which until recently was more straightforward and efficient
on FPGAs. Unfortunately, arithmetic issues with fixed-point
representation have been detected often in complex conduc-
tance models [20]. Beuler et al. [21] have proposed an FPGA-
based framework for real-time, single-compartment HH mod-
els using floating-point arithmetic. The real-time achievable
network was 400 neurons and the system included a GUI for
easy experiment configuration. Another FPGA-based approach
for inferior olive brain models, able to simulate 96 cells in
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Fig. 1: Representation of the target InfOli model/application.

real-time and using FP arithmetic, was presented in [12].
Such attempts are limited in scope and in-depth analysis of
the requirements, relevant to the neuroscientific experiments,
thus, fall short of painting the big picture. To the best of
our knowledge, only Bhuiyan et al. [22] have made an
attempt for a more complete analysis of large-scale SNNs.
The design was implemented on a SRC-7 H MAP platform,
a software/hardware co-design HPC system that includes a
Stratix II FPGA for acceleration. Even though impressive
results and optimizations were derived, the models themselves
were not analyzed as applications in general but only as
implementations on the particular SRC platform. Additionally,
the networks were considered only as an image-recognition
application and no neuroscientific-experiment instances with
biological plausibility were considered.

IV. THE INFERIOR-OLIVE MODEL

The InfOli application, which is the focus of this paper,
is a model that represents the Inferior-Olive Nucleus. This
is an intricate part of the olivocerebellum system, which is
one of the most dense brain regions and plays an important
role in sensorimotor control. It does not initiate movement by
itself but it does provide rhythm and coordination for motor
functions. It is considered to be imperative for the instinctive
learning and smooth completion of motor actions [23].

The inferior olive provides one of the two main inputs to
the olivocerebellum system through the so-called climbing
fibers, the other being the mossy fibers. The inferior-olive
neurons are also heavily interconnected to one another through
direct electrical connections called gap junctions (GJs). The
gap junctions define the synchronization behavior between the
Inferior-Olive cells and, subsequently, influence the synchro-
nization and learning properties of the overall system [23].

A. Abstract Model Description

The InfOli model considered in this work was originally
developed by De Gruijl et al. [24]. It is an extended-HH
(eHH) model representation of the inferior-olive cell. It im-
plements a neuron with three distinct compartments, the
dendrite, the soma and the axon. Within the dendrite the
model also includes the gap junctions which implement the
inter-neuron connectivity within the inferior-olive nucleus. It

TABLE I: Neuron requirements per simulation step.

Computation FP Operations per neuron
Gap Junction 475 per connection

Cell Compartment 859
I/O and storage FP Variables per neuron

Neuron States 19
Evoked Input 1

Connectivity Vector 1 per connection
Neuron Conductances 20

Axon Output 1 (Axon Voltage)
Compartmental Task % of FP ops for 96 cells

Soma 13
Dendrite 10

Axon 8
Gap Junction 69

is these gap junctions that complicate the model further and
add the term “extended” to the standard HH model. The
dendrites represent the cell input stage, the soma is the cell
part wherein most of the processing takes place, and the axon
represents the cell output stage towards the climbing fibers.
In reality, every compartment includes biophysical attributes
and, thus, computational processes take place in all three of
them and also within each GJ connection itself. The GJs are
associated with important aspects of cell behavior as they are
not just simple connections; rather, they include significant
and intricate electrical processes, which is reflected in their
software implementation.

Every compartment includes a number of state parameters
denoting its electrochemical state and the neuron state as a
whole. The neuron state is updated at each simulation step;
every new state update is based upon: (i) the previous state of
the compartment updated, (ii) the previous state of the other
compartments of the same neuron (mainly, the compartment
voltages), (iii) the previous state of the dendritic compartment
of the neurons to which the updating neuron is connected
through the GJs (mainly, the dendritic voltage), and (iv) the
externally evoked input to the InfOli, representing the input
coming from the rest of the cerebellar circuit into the nucleus.

The three compartments and GJs are evaluated/updated
concurrently at each simulation step. The model is calibrated
with a simulation time step of δ = 50 µsec. As a result, for
a simulation to be able to run the InfOli network with real-
time performance, every simulation step for the entirety of the
network must be completed within 50 µsec.

Figure 1 depicts a representation of the InfOli model. The
GJs are part of the dendritic compartment, thus the compart-
ment receives the extra input coming from the inter-neuron
connection. The network works in a step-wise fashion provid-
ing discrete output values at every time step which – when
aggregated in time – represent the response of each neuron in
the network. Depending on the experiment objectives and the
kind of behavior required to explore, InfOli implementations
can be tuned in terms of (i) the number of simulated cells,
(ii) the degree of cell inter-connectivity and (iii) the degree of
detail of the simulated GJs.

Inspecting a simple C version of the InfOli application
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reveals that the GJs have potentially great impact on the
total model complexity due to the intense computations re-
quired to simulate each one of them. As seen in Table I,
the total number of floating-point (FP) operations needed for
simulating a single step of a single cell including a single
GJ are 1,334. Of those, more than 35% are the operations
required just for the GJ. In an N -cell network, if each neuron
maintains a constant number of connections C to neighboring
cells, the overall GJ computation cost has linear complexity
Ogj(C × N). For realistic experiments, it is not the number
of connections C but, rather, the connectivity density that is
indicative of neuron interconnectivity. That is, the average
percentage of the total neuron inventory to which neuron cells
are connected (measured in % units). As a result, the previous
complexity can be expressed as Ogj(N × N × K), where
K is the connectivity density. It is clear that the worst-case
interconnectivity scenario occurs when K = 1, i.e. all neurons
are connected with all other neurons, whereby the complexity
is Ogj(N

2). All remaining, non-GJ computation increases in
a linear fashion Ocell(N), as the remainder of the application
is of purely dataflow nature. This makes GJ computations the
dominating factor in eHH models when GJ functionality is
being modeled. This is true even for relatively small-scale
networks like, for example for a 96-cell, all-to-all connected
network (Table I). In Section VI, we shall see that connectivity
density is a deciding factor for the performance of the target
application.

B. InfOli Use Cases

For our analysis, we use three use cases, which are repre-
sentative of the memory and computational requirements in
typical InfOli workloads. All of the use cases are realistic
instances of the InfOli application and have neuroscientific
merit.

The biology of each neuron is characterized by the internal
conductances of the ion channels modeled in each compart-
ment. In all use cases, the user can set each neuron ion
channel conductance separately with every experiment and
for each cell, giving the greatest possible control over the
biological behavior of the simulated network. Additionally, the
application allows for the connectivity of the InfOli network
to be programmable by the user before the simulation is
deployed. The network connectivity is defined by an N ×N
connectivity matrix (where N is the network size) of FP values
signifying the weight of each connection. The weight value
is used in the GJ computations to calculate the connection
impact on the neuron. A weight of 0.0 denotes the absence
of the corresponding GJ connection. The three use cases are
focused around the biological complexity of the GJs:

1) InfOli with Realistic Gap Junctions (RGJ) – InfOli
cells modeled with (biophysically) realistic GJ intercon-
nectivity. The highest amount of detail is included in the
GJ modeling.

2) InfOli with Simplified Gap Junctions (SGJ) – InfOli
cells modeled with GJs replaced by simplified , passive
connections. This constitutes a simpler implementation
in comparison to the previous use case.
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Fig. 2: Floating-point operations needed per simulation step
of the InfOli model for each use case and for different
connectivity densities.

3) InfOli with No Gap Junctions (NGJ) – InfOli cells
modeled without accounting for GJs and without any
interconnectivity implementations. This is the simplest
use case, whereby the neurons are modeled as separate
computational islands.

In Figure 2, we present the amount of FP operations,
based on the manual profiling of a simple, sequential C
implementation of the InfOli application. Numbers appear for
each of the three above use cases for different network sizes.
It should be noted that the lowest connectivity density of the
RGJ and SGJ cases corresponds to the NGJ case, since no
neuron connections are implemented whatsoever. As a result,
it is expected for the respective number of FP operations to
coincide between the RGJ and SGJ cases in Figure 2.

1) InfOli with Realistic Gap Junctions (RGJ): This use case
represents a fully featured version of the InfOli application.
The complex Gap Junction dominates the computation in
this use case. GJs here are implemented as a very specific
representation of the biological nucleus (Listing 1). In Figure 2
the computations increase quadratically, as we simulate more
neurons and increase their connectivity density.

2) InfOli with Simplified Gap Junctions (SGJ): Often, ex-
periments explore more rudimentary connections between HH-
modeled neurons. Such level of detail as in the RGJ case is an
overkill while inducing a significant amount of computational
cost. Thus, we assume a use case of the InfOli application
that simplifies the connection between neurons to a simple
input accumulator – more typical for this kind of experiments.
The accumulation is parameterized using the weight that is
assigned to each connection between two neurons. This use
case has significantly lower processing requirements. Even
though increasing the network size leads to similar results
(compared to the RGJ case), the actual FP operations are
reduced by about two orders of magnitude compared to the
previous use case (Figure 2).
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TABLE II: Specifications of Evaluation Platforms
Spec Maxeler Vectis Xeon Phi
Host system i7-2600@2.8GHz with 16GB of RAM Xeon E5-2697v2@ 2.7GHz with 64GB of RAM
On-Board DRAM 24 GB 8GB
RAM bandwidth 38.4 GB/s 320 GB/s
Memory streams/channels 15 16
On-chip memory 6.5 MB (FPGA BRAMs) 30 MB (L2 cache)
Number of chip cores Not Applicable 61
Chip frequency depends on the implemented design 1.053 GHz
Instructions set fully configurable 64 bit
Power consumption 140 W 225 W

Listing 1: Example of RGJ implementation in C.
1 for ( i =0 ; i<InfOli N INPUT ; i ++) {
2 V = prevVdend − neighVdend [ i ] ;
3 f new = V ∗ exp(−1 ∗ V ∗ V/ 1 0 0 ) ;
4 F acc =+ f new ;
5 V acc =+ V;
6 }
7 I c = CONDUCTANCE ∗ ( 0 . 8∗ F acc + 0 .2∗V acc ) ;
8 return I c ;

3) InfOli with No Gap Junctions (NGJ): This use case rep-
resents the minimally featured version of the InfOli application
in which neurons run as independent computational islands.
No connectivity is being modeled and the application exhibits
a high degree of data-level parallelism. In cases where the
simulated brain time is very short and the connectivity not
dense, it might be more efficient to implement the connectivity
outside the acceleration platform, thus, this use case is also
relevant for real life experiments. The processing requirements
scale almost linearly to the network size and compared to the
other use cases fewer computations are needed as shown in
Figure 2. Here, the only communication overhead is due to
input/output traces transfer.

C. Quantifying Neuron Interconnectivity

While the InfOli application can implement any neuron
interconnectivity (through a simple connectivity matrix), for
the purposes of this work we feed the InfOli application
with connectivity maps that were created a priori in order
to reflect a certain connectivity density. Thereby, inter-neuron
communication (and its associated computing complexity and
memory overheads) can be manipulated for profiling purposes.
To fully enable this configuration, we have implemented a
connectivity generator which prepares the input of the InfOli
application. The network to be simulated is, in the general
case, expressed as a three-dimensional mesh of neurons. Each
neuron is assigned a set of three integers representing the
neuron’s normalized Cartesian coordinates. These sets can be
used to calculate the distance between each neuron pair. The
distance between neurons adjacent to each other is considered
as the unit of distance measurement. Based on the distance
of each neuron pair, the probability of them forming a synap-
tic connection can be computed, according to a pre-defined
distribution. Figure 3 illustrates an example of the probability
of a connection being formed (Pc) for a variety of distances
between neurons (r) and a range of exponential distributions
(differentiated by their average value µ). For each evaluated
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Fig. 3: Example of connection probability, using the exponen-
tial distribution with mean value µ and the distance between
neurons (r). Both quantities are measured per unit (p.u.).

pair of neurons in the network, Pc is calculated and a random
number x is produced between 0 and 1. Iff x < Pc, then we
assume that a connection will be implemented for these two
neurons. As a result, by tuning distribution parameters (µ in
the example of Figure 3), a different intensity in the formation
of neuron connections is achieved, and consequently different
connectivity densities.

V. TARGET PLATFORMS

All three InfOli use cases have been evaluated on two
platforms. More precisely a hardware-based implementation
was developed to be ported to a Maxeler Vectis Data-Flow
Engine (DFE) board as well as a software-based implemen-
tation for the Intel Xeon Phi 5110P system [14] (part of the
Blue Wonder iDataPlex cluster hosted at STFC, UK [25]).
The specifications’ overview for both evaluation platforms is
presented in Table II.

The Vectis DFE is a Maxeler HPC node based on recon-
figurable hardware. Its tool flow is designed and optimized
to accommodate the acceleration of dataflow applications;
that is, applications with the bulk of their implementation
using purely raw computations with the absence (partially
or totally) of branching execution or feedback paths. The
Maxeler tools can exploit the nature of dataflow applications
to implement very fine-grain pipelined designs, maximizing
processing throughput and overall performance. Maxeler DFEs
provide several GBs of DRAM with on-board high bandwidth
connections to the reconfigurable chip. Thus, they are an
excellent fit for many scientific workloads, such as ours, and in
general for workloads that require to process large amount of
data. What makes Maxeler DFEs stand out from the rest of the
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Fig. 4: Vectis architecture of the InfOli kernel. The GJ is not
present in the NGJ use case.

FPGA-based solutions is the excellent high-level programming
language employed for kernel coding (Java with Maxeler-
related extensions) and the ability to form scaled up, multi-
DFE platforms in a seamless (i.e. user-transparent) manner
[26]. Consequently, Maxeler has covered significant ground in
bridging part of the programmability gap between reconfig-
urable hardware and general purpose processing nodes, such
as the Xeon Phi. The DFE board used in our experiments
is a 3rd-generation Vectis-DFE board, that includes a Xilinx
Virtex-6 FPGA chip.

The Xeon Phi is a Many Integrated Core (MIC) architec-
ture co-processor, which features 61 cores, each capable of
supporting up to 4 instruction streams. The current generation
of Phi cards, named Knights Corner, use an Intel Xeon host
processor which can offload work to the Phi, much like a GPU,
using well-known programming models such as OpenMP and
OpenCL. However, in contrast to GPU mentality, the Phi
can also be thought as a stand-alone processor in that it has
its own Operating System. This allows for an application
to run natively on the platform, which is what our InfOli
implementation opts for.

A. InfOli on Maxeler Vectis

The DFE implementation of the InfOli application depicted
in Figure 4 is based on the design presented in [11]. It
incorporates 3 internal pipelines, one for each part of the
neuron (Dendrite, Soma, Axon), each performing the respec-
tive computations. The state parameters for every neuron are
stored in separate BRAM blocks (one per neuron) for faster
and higher-bandwidth access. The input stream to the DFE
kernel is written in the on-board DRAM and represents the
evoked (external) inputs used in the dendritic computations
comprising the network input. The initial state and neighboring
(gap-junction) influence are streamed in the DFE from the on-
board memory only once (initialization data) at the beginning
of the simulation. During execution, the kernel output is
streamed out to the on-board memory while also updated on
the (on-chip) BRAM blocks of the DFE. The connectivity
matrix weights are also sent to the DFE at every simulation
step, for the use cases that include programmable connectivity.

Fig. 5: Xeon-Phi architecture of the InfOli kernel.

Using a memory-based connectivity matrix allows us to avoid
the time-consuming process of resynthezing a new DFE for
updating the connectivity density of an experiment.

The program flow is tracked using hardware counters which
monitor the neurons executed, the number of simulation steps
completed, as well as the GJ loop iterations (where applicable).
The data flows through the DFE pipelines at each kernel
execution tick, consuming an input set and producing the
output and a new neuron state. The DFE execution naturally
pipelines the processing of different neurons within a simu-
lation step. Simulation steps are not independent from each
other and thus are not parallelizable. That is because every
neuron requires the previous state of all other neurons to
compute its GJ (in the RGJ or the SGJ case) before a new
step begins. As a consequence, the DFE pipeline is flushed
before a new simulation step. This dependency is removed
when 0% connectivity density is imposed on a simulation. In
experiments with random connectivity, a constant number of
ticks is spent by the DFE for computing each GJ connection
whether it actually exists or not. This is because the kernel
is designed with a fixed pipeline for computing GJ so as
to be reusable for experiments with different connectivity
parameters. In doing so, re-synthesizing the DFE kernel is
avoided saving setup time for each experiment. Conversely,
this DFE implementation cannot get a performance benefit
from lower connectivity densities. However, using the same
DFE for experiments of different connectivities offers pre-
dictable, guaranteed performance.

The resource utilization of the FPGA device of the DFE
is reported in Table III. A single computation kernel (DFE)
fits on the FPGA device for each use case. SGJ has reduced
computations allowing a higher degree of unrolling the GJ
computation loop yielding added performance benefits.

B. InfOli on Xeon Phi

The InfOli application on the Intel Xeon Phi co-processor,
depicted in Figure 5, uses a shared-memory programming
model by utilizing the OpenMP library. The model first accepts
a user-defined map detailing connections and size of the
desired neuron network to be simulated. This map is pro-
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TABLE III: Logic utilization for the Virtex 6 FPGA chip on the Vectis.
RGJ SGJ NGJ
257409 / 297600 (86.49%) 268458 / 297600 (90.20%) 167147 / 297600 (56.16%)

cessed once and a network is dynamically generated, forming
connections between the dendrites (Gap Junctions) as dictated
by the map. Each neuron’s GJ allocates arrays of double-
precision floats. These arrays need to always store up-to-date
information for a subset of the entire network, specifically
the most recent dendritic membrane voltage potentials of the
neurons on the other side of the GJ connections. Thus, for each
simulation step, the algorithm of the model is summarized as
refreshing the information of these arrays and, then, perform-
ing the necessary computations for each of the three neuron
compartments (dendrite, soma and axon). In each algorithmic
step, the neurons are divided into subsets as evenly as possible.
Each subset is then handled by an OpenMP thread. Since the
Xeon Phi 5110P can support up to 61 × 4 = 244 instruction
streams, the application can use up to 244 OpenMP threads,
splitting the network in just as many subsets. Therefore,that
for network sizes below 244 neurons, the maximum number
of threads used (and thus the degree of parallelism) is limited
by the number of simulated neurons. This is because a single
neuron cannot be split into multiple threads. It has also been
observed that dividing the network into very small subsets does
not yield better performance, since each thread ends up having
low workload, disproportional to its overheads. Therefore, it
is not always efficient to maximize the number of OpenMP
threads, particularly for small networks.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the use
cases on the Xeon-Phi and the Vectis-DFE nodes. All use
cases were executed using a simple experiment, borrowed from
corresponding biological experiments, designed to produce a
typical response from the InfOli model: a complex spike at
the neuron output stage (axon). The experiments simulate
6 seconds of brain time. The complex spike is produced by
evoking a small 6.0 mA pulse as input to all InfOli cells at
the same point after program onset for about 500 simulation
steps (or 25 ms, in brain time).

A standard procedure for experimenting with SNN models
typically begins with an extensive, initial parameter-space
exploration using small- or medium-sized networks. Having
fine-tuned all model parameters, real experiments can then
commence by simulating either small- to medium-sized net-
works (10s to 100s of cells) for exploring real-time, closed-
loop control such as Brain-Computer Interfaces [10] (TYPE 1),
or large-scale networks (>1000s of cells) for mounting behav-
ioral experiments [27] (TYPE 2). To tackle both experiment
types, in this section we evaluate a range of 96- to 1,056-cell
networks as well as a range of 960- to 7,680-cell networks.

A. Measurement Methodology

Timing measurements on the Vectis DFE were taken mea-
suring the kernel time within the host code using timestamps
before and after the kernel call. The CPU host code is

blocking, thus, only the DFE kernel is active during the mea-
surement. The time includes the kernel execution (processing
and DRAM data-exchange delay) and the activation delay of
the FPGA device. This activation takes about 1 ms, which is
negligible compared to the overall execution time that takes
several seconds to several minutes in our experiments. The
execution time of a single-simulation-step is derived from the
total execution time divided by the number of simulation steps.
The DRAM communication delay can be estimated by the
amount of data exchanged between the FPGA device and the
on-board DRAM per simulation step, considering the DFE
DRAM bandwidth.

All measurements concerning the Xeon Phi have been
carried out with Intel’s profiling and analysis tool Vtune
Amplifier XE 2015. Information for the DRAM accesses and
average bandwidth used by the application, was obtained by
performing bandwidth-mode analysis. This analysis further
provides insights related to the program execution time and
CPU utilization. The profiler was installed on the Intel Xeon
host (since the Phi card has a minimal OS) and launched
with directives for collecting information from the accelerator
platform (-target-system=mic-native flag).

B. Execution Time vs. Network Size vs Connectivity Density

Next, we evaluate the performance of the two platforms
for different network sizes and connectivity densities. All
execution results are presented per simulation time step.

The performance results of the three use cases on the Max-
eler Vectis-DFE platform are depicted in Figures 6a and 6c,
for small-to-medium and for large network sizes, respectively.
Connectivity density does not affect the execution time of the
DFE implementations. That is because the design statically
supports all-to-all connections (100% connectivity density) in
a fixed dataflow pipeline. As discussed earlier, this avoids
re-synthesis of the design whenever connectivity parameters
change, reducing the time needed to setup an experiment.

As illustrated in Figure 6a, for small/medium network sizes,
the DFE’s fine-grain parallelism yields good performance
scaling to the network size, even for the demanding case
of InfOli neurons with realistic GJs (RGJ). Execution time
ranges from 6 us to a little over 500 us for 1,056 neurons.
Figure 6c shows the DFE’s performance for larger network
sizes (>1000). The use of the BRAM blocks on the DFE
FPGA chip, where the most frequently accessed data (the
neuron states) are stored, improves input/output bandwidth
and overall performance but limits available chip area and,
thus, maximum neuron capacity which is 7,680 neurons. Now,
execution times, for the RGJ case, increase more rapidly with
increasing problem sizes. The reason for this degradation is as
follows: In order to parallelize the GJ computations efficiently,
the DFE uses loop unrolling on the main computation loop
of the GJs. The resources of the FPGA chip allow for a
maximum unroll factor of 16. Although this is sufficient for
exhibiting good performance scalability for networks of up to
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(d) Xeon Phi

Fig. 6: The Vectis DFE has better performance at reduced neuron network sizes, however Xeon Phi is the better option for
larger problem sizes. Besides, RGJs come at an extra performance cost for all considered cases. The NGJ case constitutes,
by definition the lower bound of InfOli performance. Colored areas correspond to the range of possible execution-time values
due to different connectivity densities (0%-100%). (Note: Areas are not stacked. RGJ performance is surpassing the SGJ case
by the highlighted amount.)

1,000 neurons, for larger problem sizes speedup is limited.
SGJ is an exception, as the simpler GJ connections allow for
a higher unroll factor (96) and provide good scalability for
both the small-to-medium and large-scale networks.

Although the maximum size of a simulated network is
important for TYPE-2 experiments, achieving (brain) real-time
speed is critical for TYPE-1 experiments. Table IV presents
the real-time capabilities of each use case. For the RGJ use
case, the Vectis DFE can simulate 300 neurons at real-time
speed, while for the SGJ case the real-time network is 550
neurons. As expected, the NGJ case exhibits a linear increase
in execution time; this results in a capacity to execute 7,200
neurons in real-time on the DFE.

Application behavior is significantly different on the Xeon-
Phi implementation. Here, the design can actually benefit
from lower connectivity densities but, at the same time,
cannot provide a performance guarantee for every problem
size in each use case. Different problem sizes and connectivity
distributions can produce quite varied connectivity densities
that affect performance.

In general, the Xeon-Phi performs well in simulating small-
to-medium scale networks. Still, it is about 50% ( medium-
scale networks) to almost an order of magnitude (in small-

TABLE IV: Real-time achievable network for each use case
on each platform

Vectis-DFE Implementation Real-time Network Size
RGJ 300
SGJ 550
NGJ 7,200
Xeon-Phi Implementation Real-time Network Size
RGJ (100% connectivity) 24
SGJ (100% connectivity) 54
NGJ 54

scale networks) worse than the DFE implementation in the
RGJ use case. The gap is even greater for SGJ and NGJ as
illustrated in Figure 6b.

The above trends change notably when simulating larger-
scale networks, mainly for the RGJ case as shown in Fig-
ure 6d. On one hand, the FPGA resources available in the
Maxeler Vectis DFE limit the degree of unrolling in the
GJ computations. On the other hand, the Xeon Phi is able
to more efficiently handle the increasing GJ computations
through a large number (244) of parallel threads, which are
finally utilized efficiently. Thereby, the Xeon Phi can scale
RGJ performance better for large network sizes, achieving up
to 30-35% lower execution time than the Vectis DFE. That is
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Fig. 7: L1 cache hit rates and compute-to-data ratio for each use case for 100% connectivity networks of the Xeon Phi
implementation.

not, however, the case for the other two use cases. When no
connectivity is present or simpler connections are used, the
DFE manages to keep up with the increasing computations
and keeps performing better than the Xeon Phi even for large
networks.

To give a better insight on Xeon Phi’s performance we
discuss in more detail some of its performance metrics.
Figure 7a illustrates the hit ratio of the Xeon Phi’s L1 caches
when simulating networks of various sizes and connectivity
patterns. Large networks without GJs require small amounts
of data and exhibit good data locality, leading to high hit ratios.
On the other hand, simple and regular GJs have large memory
footprints, leading to lower L1 hit rates. SGJ has a lower L1 hit
ratio than RGJ as its GJs are less complex and exhibit less data
reuse during processing, compared to the realistic GJs. Once
the core fetches the GJ’s data to its L1 cache, processing an
a realistic GJ will yield more L1 hits than in the simpler GJ.
Moreover, Figure 7b presents the ratio of CPU cycles spent
in computations per CPU cycles spent in accessing L1 cache
and leads to similar observations. NGJ and RGJ achieve more
computations per L1 access compared to SGJ which appears
to wait overall longer for the memory.

Aiming for real-time performance, Xeon Phi can simulate
24 neurons in RGJ experiments. The real-time achievable
network for the SGJ and NGJ is 54 neurons. All cases are
substantially lower than Maxeler DFE as shown in Table IV.
This is explained by the fact that the Xeon Phi resources
cannot be used efficiently for such small networks sizes.

C. DRAM Data-Transfer Overhead
Besides analyzing the overall execution time, it is interesting

to also measure the fraction of overall time spent in processing
versus the time spent in waiting for the DRAM data to
arrive. Typically, in this class of applications, where com-
plex biophysically accurate models are simulated, processing
dominates the overall execution time. So, the data-transfer
timing overheads are expected to be small compared to the
computation times.

In the Vectis-DFE implementations, fast on-FPGA-chip
BRAM blocks are used to store the neuron states. BRAMs

increase the overall input/output bandwidth of the DFE and
require in practice a single cycle to access. Neuron states are
the most frequently used data both for the neuron-compartment
processing as well as for the GJs processing. As a result,
the Vectis-DFE implementation has negligible data-transfer
overheads. The fraction of time spent waiting for off-chip
data in small-to-medium networks, depicted in Figure 8a,
is consistently under 0.02% in the most memory-demanding
RGJ case. Even for NGJ, where computations scale linearly
to problem size, the time spent waiting for DRAM access
is slightly over 0.02%, showing that the provided DRAM
bandwidth is sufficient for feeding the DFE engine. For larger
networks – even in the worst case – the time spent waiting for
data transfers is still very low as shown in Figure 8c.

The Xeon-Phi offers an order of magnitude higher memory
bandwidth than the DFE, achieving 320 GB/s versus 38.4
GB/s. As can be observed in Figure 8b, for the most data-
intensive RGJ, the DRAM overhead in execution time does not
scale well above 500 neurons. Still, the overall performance
penalty is low due to the high memory bandwidth of the
Xeon Phi. When simpler or no GJs are employed (SGJ, NGJ),
the DRAM data-transfer overhead is negligible and remains
so for all tested problem sizes. In larger-scale networks,
the bandwidth is utilized even more efficiently as shown in
Figure 8d, keeping the performance impact of DRAM data-
transfer low. It is noteworthy that, in the RGJ experiments for
more than 2,000 neurons the DRAM overhead in execution
time reaches a plateau indicating that Xeon Phi gets to a steady
state where DRAM feeds the cores with new data at the same
rate that they are processed.

VII. DISCUSSION

Even though HH models comprise challenging systems
of differential equations due to their high modeling accu-
racy, such models form essentially embarrassingly parallel
computational problems that can be solved with a typical
divide-and-conquer strategy. In such cases, each neuron model
effectively becomes a free-running oscillator, the execution of
which can be parallelized independently of its neighbours. The
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Fig. 8: DRAM data-transfer overheads for the considered workloads. It is clear that both platforms have enough provisions and
are not DRAM-bound for any of the explored use cases. Colored areas correspond to the range of possible timing-overhead
values due to different connectivity densities (0%-100%). (Note: Areas are not stacked. RGJ overhead is surpassing the SGJ
case by the highlighted amount.)

more powerful the processing nodes employed, the higher the
speedups achieved.

However, complementing cell models to include Gap-
Junction (or any type of complex-connection) modeling leads
to extended-HH models which not only feature increased
computational complexity (due to the GJ calculations) but,
additionally, cease to exhibit an embarrassingly parallel nature.
The reason, of course, is that – with a rising connectivity
density among neurons in a network – dependencies among
differential equations also rise, leading to computational prob-
lems that are increasingly difficult to parallelize across simu-
lation time steps. In effect, in such cases coupled oscillators
are formed that need to be co-simulated in strict lockstep
among them. This requirement, in turn, enforces the use of
cycle-accurate, transient simulators where simulation steps
are hardly compressible and all neuron states need to be
completely updated at each simulation step.

From the above discussion it is obvious why the majority of
the computational-neuroscience community has so far avoided
employing HH models and multi-compartmental models with
complex connections on large problem sizes using conven-
tional computing machines. Yet, the eventual use of biophys-
ically plausible neurons and connections on a larger scale is
required, especially for the exploration of systems explaining

biological behavior. The emergence of new mainstream HPC
platforms and processing nodes, such as the ones discussed in
this paper, has the ability to fill the technological gap required
for such neuroscientific experiments.

The Maxeler Vectis-DFE implementation shows impressive
performance for small-to-medium scale networks and also
achieves high real-time networks, as compared to the current
state of the art. This makes the DFE a suitable platform for
speeding up experimentation on small-to-medium size neuron
networks, that are often used for parameter-space exploration
of neuron models such as the InfOli. The DFE is also suitable
for experimentation with real-time setups (TYPE 1) as it can
achieve networks of meaningful sizes at real-time speeds.
Finally, it can also provide predictable performance for any
kind of network size or input and connectivity, a crucial
factor when planning lengthly experiments and a feature that
software-based solutions cannot easily provide. The Vectis
DFE does have limitations, though, in performance when
the computational demands increase above the parallelization
capabilities that the DFE can provide, as it can be seen for the
RGJ use case.

The Xeon-Phi platform, on the other hand, is suitable for
larger-scale experiments (TYPE 2) of extreme computational
demand, because of the high memory bandwidth and amount
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of parallel threads provided. Besides, despite the concessions
Maxeler makes through use of its Maxeler-Java programming
language, the Xeon Phi remains a much more straightforward
platform to program on, as it is a software-based solution.
Furthermore, it can exploit different connectivity densities in
terms of performance efficiency, but this aspect also results in
its inability to provide predictable performance. Additionally,
the resources on the Xeon Phi can support a larger maximum
network population that the Vectis DFE. However, when it
comes to real time model execution, the Xeon Phi falls short
of the 50 − µsec timing constraint for achieving real-time
simulations, regardless of the network size used.

VIII. CONCLUSIONS

In this paper, we present a thorough performance analysis
for a state-of-the-art neuroscientific application, targeting the
Inferior Olive (InfOli) neuron cells. The societal and scientific
importance of this class of workloads is directly tied to the
insight they provide into obscure brain functionality. As such,
they are typically ported on accelerator platforms, so that
their computational complexity can be tackled. We target two
accelerators that have demonstrated great potential, especially
given their integration and clustering capabilities: the Maxeler
Vectis Data-Flow Engine (DFE) and the Intel Xeon Phi. The
quality and intensity of inter-neuron connections has been used
to isolate representative use cases of the InfOli application for
the two target platforms. We substantiate, in all cases, that the
target neuron simulator scales gracefully in terms of DRAM
utilization, with both platforms exhibiting enough slack in
DRAM timing overhead. Regarding overall performance, the
Maxeler Vectis Data Flow Engine (DFE) is clearly optimal
for small- and medium-scale, real time simulations. Executing
a fixed synthesized implementation, the performance of the
DFE is not affected by changes in neuron connectivity density.
The Xeon Phi, on the other hand, appears more suitable
for large-scale simulations, with many neurons and dense
interconnectivity between them.
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