
VineTalk: Simplifying Software Access and Sharing
of FPGAs in Datacenters.

Stelios Mavridis, Manolis Pavlidakis, Christi Symeonidou,
Christos Kozanitis, Nikolaos Chrysos, and Angelos Bilas

Institute of Computer Science (ICS)
Foundation for Research and Technology – Hellas (FORTH)

Ioannis Stamoulias, Christoforos Kachris, and
Dimitrios Soudris

Institute of Communication and Computer Systems (ICCS)
National Technical University of Athens (NTUA)

Abstract—FPGA-based accelerators are becoming a first class
citizen in data centers. Adding FPGAs in data centers can lead
to higher compute densities with improved energy efficiency
for latency critical workloads, such as financial applications.
However deployment of FPGAs in datacenters is hindered, as
both developers and cloud providers face difficulties. Application
writers need to deal with FPGA interfacing as well as application
logic/algorithms. On the other hand, cloud providers are reluctant
to deploy FPGAs in large scale, due to the FPGAs lack of
sharing that results in reduced utilization and questionable ROI.
In this paper, we introduce VineTalk, a framework that reduces
the programming effort associated with FPGA-based accelerators
and FPGA virtualization. We integrate VineTalk with the Xilinx
SDAccel development framework and we map it to the Kintex
UltraScale FPGA. Our preliminary evaluation with a use-case
of financial applications shows that VineTalk can offer effective
FPGA sharing introducing less than 4% overhead to application
execution time.

Index Terms—hardware accelerator, virtualization, cloud com-
puting, FPGAs, data centers.

I. INTRODUCTION
The cost-effectiveness of commodity hardware has led to

horizontal scaling of modern datacenter applications: When-
ever an application challenges the limits of a single server, one
can simply get more performance by using more servers in par-
allel. As a result, today most large scale datacenter applications
are hosted by scale-out deployments of commodity servers,
either in private datacenters or in public clouds. However,
recent trends, both in application requirements and technology,
challenge the sustainability of this scale-out approach. First,
applications are becoming more computationally intensive.
There is an increasing use of compute intensive workloads,
such as machine learning and deep learning algorithms where
matrix multiplications dominate [1]. Second, with the current
projections for unprecedented data growth, applications will
need to continue on the scale-out path. As a result, CPU
processing is becoming a main limitation in datacenters [2].

Recently, a response to these trends has been the use of
application-specific accelerators in datacenters. The use of
such acceleration units can increase performance and effi-
ciency of datacenters significantly, while maintaining power
and hardware costs under control. In the last couple of years
there have been several reconfigurable architectures proposed
for the acceleration of cloud computing applications in dat-
acenters. However, there are three main challenges that limit
the use of FPGA resources in the cloud.

The first challenge is the high programming effort. To
address this issue in hardware design, FPGA vendors have
already modernized hardware design procedures by replacing
traditional HDL languages, such as VHDL and Verilog, with
higher level languages, such as OpenCL and C++. Despite this
progress however, hardware design still remains a challenge
for software engineers.The second main challenge is the inter-
facing of FPGA resources to software applications. For each
application, typically there is a complex and platform specific
communication layer that needs to be considered carefully
to transfer data to the FPGA, allocate and release memory,
specify which routine to run, and get the results back. The
third challenge is the lack of virtualization mechanisms in
FPGAs, which allows operators to achieve better utilization
of their hardware. However, virtualization of FPGA resources
presents two main challenges. First, it requires dynamic re-
configuration, which is hard to achieve transparently. Second,
even when applications use the same configuration on a FPGA,
it is a challenge to coordinate the shared access to the FPGA.

In this paper we present VineTalk, a software layer be-
tween FPGAs and applications that reduces the complexity of
communication between application software and accelerator
hardware, and allows sharing of FPGA across applications.
Furthermore, VineTalk allows applications to transparently
access FPGA accelerators, regardless of whether they run
natively on a server, within virtual machines, or containers.
In this work we focus on FPGA sharing among different
applications that use the same configuration, and we leave
as a future work the complete virtualization of FPGAs with
dynamic reconfiguration on top of our device sharing infras-
tructure. Our system consists of two major components: a
Communication Layer that implements VineAccelerators and
VineBuffers, and a Software Controller that runs as a user-level
process and controls/schedules all accesses to the accelerator.

The main contributions of this paper are the following:
1) A software interface, which exposes FPGA accelerators

as task queues to applications.
2) A hardware interface, which simplifies the addition of

new kernels by hardware developers.
3) A Software Controller that facilitates sharing of accel-

eration resources.
4) An integration with the SDAccel framework of Xilinx.

We implement VineTalk for Linux servers using 4700 lines of



ApplicationsApp 1

V
in

e
Ta

lk

Software 
API

Communication
Layer

VA1

Software 
ControllerThread Thread

VA2

Hardware 
API

FPGA 

SDAccel

GPU

CUDA

Communication
Layer

VA1

Software 
ControllerThread Thread

VA2

Hardware 
API

FPGA 

SDAccel

GPU

CUDA

App 2

Fig. 1. Design overview of VineTalk. VA represent VineAccelerator

C code. We demonstrate VineTalk’s FPGA abstraction capa-
bilities with a financial application running on a Xilinx ADM-
PCIE-KU3 FPGA device. The application uses a hardware im-
plementation of the Black&Scholes algorithm, and accesses the
FPGA using the Xilinx SDAccel development environment.
The simplicity of the VineTalk API reduces applications’ code
complexity by 30% in terms of lines of code. Our results show
that applications that user VineTalk to access the SDACCel
framework have a performance overhead from 0.9% up to 4%
compared to their native execution. Moreover, for applications
that share the same accelerator, the overhead is negligible.

II. RELATED WORK

The use of heterogeneous systems comes at a significant
cost: the increase in programming complexity at different
levels. To overcome issues related to programming the FPGA
itself, developers can employ High Level Languages, such
as OpenCL or System C [3], [4]. However, little has been
done to reduce the effort in incorporating the use of FPGAs
in applications and services. Recent research has examined
various techniques to partition FPGAs so they can be used by
multiple applications. Our work is orthogonal to these efforts
since our goal is to allow applications to share simultaneously
each partition. In [5], a novel framework is presented that
integrates reconfigurable accelerators in a standard server
with virtualized resource management and communication.
Unlike their approach, VineTalk places the accelerator con-
troller in the host, completely avoiding dependencies with
a hypervisor. In [6], a runtime system has been proposed
to simplify the FPGA application development process by
providing a high-level API and a simple execution model that
supports both software and hardware execution. VineTalk uses
a host core for scheduling tasks/accelerators, which leaves all
FPGA/accelerator resources available to applications.

III. THE VineTalk FRAMEWORK

Figure 1 presents the design of VineTalk for a sin-
gle server setup. Our design consists of a Software-facing
API(Section III-A), Hardware-facing API(Section III-D), a
communication layer (Section III-B) based on shared memory
and a Software Controller (Section III-C).

A. Software Facing API

Our Software-facing API replaces the multitude of all
platform-specific acceleration APIs, all of which provide func-
tions that handle memory management and data and task

transfers between applications and hardware accelerators. The
implementation of the API is completely decoupled from
accelerator details. VineTalk achieves this by using three main
abstractions: VineAccelerators, VineTasks, and VineBuffers.

A VineAccelerator is a virtual accelerator that can execute
a specific kernel. When a VineAccelerator is created by an
application, the application specifies the kernel that it needs to
execute. Then, the system identifies the physical accelerators
that can execute the required kernel and maps the VineAccel-
erator to one or more physical accelerators. VineAccelerators
can be shared across threads but are private to applications.
Each application can allocate as many VineAccelerators as it
desires. VineTalk uses a repository of kernels to instantiate
them on an FPGA at system initialization. The FPGA may
support multiple partitions. Although VineTalk can remove
unused kernels from the FPGA and instantiate new kernels
as requested by applications, we do not explore this further.
After a VineAccelerator has been allocated, an application
can issue VineTasks. VineTasks are not statically mapped to
a physical accelerator. Consequently, a single physical accel-
erator can achieve higher utilization by executing VineTasks
from multiple VineAccelerators. VineBuffers are used to handle
transparently the transfer of the data between an app’s address
space to the physical accelerator. VineTalk transparently moves
data between application memory and physical accelerators.

The Software-facing API enables applications to access
these abstractions through a set of methods as in Table I.

B. Communication Layer

VineTalk’s communication layer implements and manage
VineAccelerators and VineBuffers. With VineTalk, applica-
tions run as separate processes (or VMs) from the Software
Controller. Therefore, VineBuffers and VineTasks need to be
transported across address spaces within the server. To achieve
this, we use a shared memory-based transport. VineTalk uses
shared memory to store all VineTasks and VineBuffers. The
advantage of shared memory within a server is that after
the setup phase there is no need to use system calls. Our
shared memory approach currently introduces two additional
copies to the shared memory segment, when sending/receiving
data to/from the accelerator memory. This transport approach
relies on shared segments that can be mapped across native
processes, containers, and VMs.

C. Software Controller

The Software Controller is a process that controls all
accesses to the underlying hardware. It monitors VineAcceler-
ators for issued VineTasks and utilizes VineBuffers to retrieve
the inputs and store the outputs. Moreover, it implements the
accelerator sharing, since it offloads multiple VineAccelerators
to the same accelerator. The Software Controller assigns a unix
thread (i.e. accelerator thread) to each physical accelerator
existing in the system. This accelerator thread, firstly selects
the VineAccelerator that is going to serve, based on a schedul-
ing policy (currently round-robin). Secondly, it pops the first
VineTaskfrom the selected VineAccelerator, and executes it to



TABLE I
MAIN METHODS OF THE SOFTWARE-FACING API.

Method Description
vine kernel get() This is a management call that (re) configures a partition of an FPGA with a kernel from a repository.
vine va get() Allocates a VineAccelerator that is capable of executing a specific kernel.
vine buffer init() Creates a VineBuffer which describes the input and output data for the kernel in the app’s address space.
vine task issue() Invokes a kernel to a VineAccelerator, using one or more VineBuffers.
vine task wait() Waits for a task to complete. After completion, VineBuffers are updated with computation results.

its physical accelerator. Then, it copies the result to the share
memory segment, and serves the next VineAccelerator.

D. Hardware Facing API

VineTalk allows hardware designers to incorporate new
kernels by using two main functions: VT2Accel() and Ac-
cel2VT(). Additionally, VineTalk already provides a number of
different implementations of this simple API to cover kernels
for different accelerators, including FPGAs and GPUs. For
FPGA devices, VineTalk implements this API in OpenCL and
SDAccel, whereas for GPU devices VineTalk implements this
API in OpenCL and CUDA. Porting applications to VineTalk
consists of two steps; First, to create a VineTalk library for
each kernel and for each VineTalk library to create a function
that contains the kernel invocation. Second, the modification
of the application to replace all accelerator related functions
with the corresponding methods from the Software-facing API.
VT2Accel() prepares the input data for an accelerator kernel.
A hardware designer is expected to provide this method for
each new kernel. The function allocates input VineBuffers on
the accelerator memory and copies the contents of VineBuffers
of the communication layer. The method will then be used
prior to kernel execution by the host controller. Similarly,
Accel2VT() is called once after the kernel execution finishes.
Its goal is to send the output back to VineBuffers and to
releases the reserved acceleration memory.

IV. INTEGRATION WITH SDACCEL

Xilinx has recently released the SDAccel framework, which
is a development environment for OpenCL applications that
targets Xilinx FPGA-based accelerator cards. It provides an
interface between software applications and FPGA devices.
The application consists of a host program written in C/C++
and one or more accelerated kernels written in C, C++, or the
OpenCL language that run on the underlying FPGA board.

VineTalk intervenes between the application software side
and the hardware side of SDAccel and simplifies the de-
velopment of applications that use FPGA accelerators as
well as incorporating new FPGA kernels to applications. The
SDAccel specific implementation of the Hardware-facing API
(see Section III-D) allows any SDAccel kernel to be used with
applications using VineTalk, with no hardware dependencies.

To evaluate the coding effort benefits of VineTalk, we
port three financial applications, Black&Scholes, Black-76 and
Binomial. We use SDAccel to build three hardware accelerated
variations of the aforementioned algorithms. We also write
and evaluate a simple application, which interfaces with those
kernels, submits tasks and data, and reports the results.

In order to port a SDAccel application we create a VineTalk
library for each kernel. For each library we use the Hardware-
facing API to simplify the kernel invocation. Moreover in the
application side, we replace all SDAccel specific functions
with the corresponding methods from VineTalk’s Software-
facing API. The resulting application consists of 30% fewer
lines of code and it uses semantically much simpler routines.

V. PERFORMANCE EVALUATION

A. Experimental Setup

For our experiments, we use one Intel(R) Core(TM) i5-4590
machine running at 3.3GHz, with 16 GBytes of DRAM, and
one ADM-PCIE-KU3 FPGA Alpha Data board, with 16 GB
DDR3, connected to PCI Express Gen3 x8. The system runs
CentOS 7 with SDAccel version 2016.4. In our evaluation we

 0.99
 1

 1.01
 1.02
 1.03
 1.04
 1.05

1 2 4 8 16 32 64 128 256 512N
or

m
al

iz
ed

 jo
b 

ex
ec

ut
io

n 
tim

e

Batch size

Native
Black Scholes

Black-76
Binomial

Fig. 2. Performance comparison between VineTalk-integrated applications,
and their standalone execution over SDAccel. The x-axis is the stock batch
size, the y-axis is the normalized job execution time in msec.

use three finacial kernels: Black&Scholes, Black-76, and Bino-
mial. Black&Scholes gives a theoretical estimate of the price
of European-style options and can also be used for American-
style call options. Black-76 is a variant of the Black&Scholes
model. Binomial option pricing quantizes time and price of an
underlying asset, and maps both to a binary tree. We perform
each experiment with 2000 options and with varying batch
size between 1 and 512. The batch size represents the number
of consecutive stocks that are transfered from the application
space to the FPGA’s memory in a single transfer. We exclude
from our results the FPGA reconfiguration overhead, which
amounts to 6.15 sec.

Black&Scholes and Black-76 have four inputs and one
output per stock, and with a batch size of 1, the input size
of a batch is 16 bytes (4 x 4 bytes) and the output size is 4
bytes. While, Binomial uses 5 inputs and 1 output, and for
batch size of 1, the input size of each batch is 20 bytes (5 x
4 bytes) and the output size is 4 bytes.



B. VineTalk overhead

We compare the execution of the aforementioned applica-
tions with VineTalk versus the standalone SDAccel execution
(Native), to identify VineTalk’s overhead. Figure 2 presents the
normalized job execution time in milliseconds. Job execution
times are averages over 20 experiments, after removing the
minimum and maximum values. VineTalk adds negligible
overheads for small batch sizes while it adds a slight penalty
for larger ones as shown in Figure 2. For Black&Scholes and
Black-76, the overhead added from VineTalk is between 0.5%
and 4% when the batch size is 512, while for batch sizes
between 1 and 32 the overhead is negligible. Binomial has an
overhead between 0.45% and 0.9% for all batch sizes. In all
cases, the main source of the overhead are the two additional
data copies (inputs and outputs) required by VineTalk in the
shared memory segment. However, although the overhead
of those transfers is constant for most experiments, as they
transfer similar amounts of data in aggregate, the impact to the
execution of each experiment varies. Runs with larger batch
sizes take significantly (by up to two orders of magnitude)
less time to execute, and thus, they become more sensitive
to the overhead of memory transfers. Table II demonstrates
this difference in the execution time for various batch size.
The table summarizes the overall application execution time
for two batch sizes, 1 and 512, for Native and VineTalk. As
the batch size increases, the application performance increases
significantly for both systems. VineTalk incurs the lowest over-
head with the Binomial application because it has longer task
execution times (and thus lower communication to computa-
tion ratio) when compared to the other kernels. Black&Scholes
and Black-76 are less compute intensive than the Binomial
kernel. Which results to greater transfer to compute ratio of
Black&Scholes and Black-76 than the Binomial. Consequently,
the extra copies have a stronger effect on the execution time
of VineTalk.

TABLE II
OVERALL APPLICATION EXECUTION TIME (SECONDS) AND OVERHEAD

(%) WITH 2000 STOCKS AND BATCH SIZES 1 AND 512.
VineTalk (sec) Native (sec) Overhead (%)

Benchmark Batch 1 Batch 512 Batch 1 Batch 512 Batch 1 Batch 512
Black&Scholes 0.39 0.00123 0.38 0.00120 2.56 2.43

Black-76 0.808 0.00187 0.0803 0.00179 0.618 4.27
Binomial 256 0.514 254.7 0.509 0.50 0.97

C. Accelerator sharing

TABLE III
COMPARE THE JOB EXECUTION TIME OF 1 AND 2 CONCURRENT VineTalk

APPLICATION(S) WITH APPLICATIONS RUNNING DIRECTLY ON THE FPGA
(I.E. NATIVE).

Black&Scholes Black - 76 Binomial
Job

number
Native
(ms)

VineTalk
(ms) Ratio Native

(ms)
VineTalk

(ms) Ratio Native
(ms)

VineTalk
(ms) Ratio

1 9.912 9.88 0.99 18.849 18.47 0.98 5128 5176 1.009
2 9.952 9.68 0.97 18.935 18.39 0.97 5113 5218 1.02

To evaluate the impact of accelerator sharing, we run con-
currently up to two instances (jobs) of each application. Limi-
tations of the current testbed, and more specifically the number
of cores, does not allow us to run more concurrent instances.
Concurrent job execution is possible only with VineTalk, which

can interleave tasks belonging to different applications. For
Native, we execute the 2 jobs sequentially, one after the other.
In each experiment, all application instances invoke the same
kernel. Each run (i.e. the sum of one or two applications)
consists of 2000 stocks and batch size 50. In the first run (with
one job), the job consists of 2000 stocks, whereas in the second
run the two concurrent jobs consists of 1000 stocks. Table III
compares the total serialized execution time (i.e. Native) with
VineTalk-powered total execution time. We also present the
Native’s to VineTalk total execution time ratio.

For all applications the execution time ratio is very close
to 1, consequently the overhead added from VineTalk is
negligible. For Black & Scholes and Black-76, the VineTalk
to Native job execution time ratio, for 2 concurrent jobs is
0.97, and 1.02 for the Binomial application. Thus multiplexing
applications with VineTalk does not introduce overheads.

VI. CONCLUSIONS
In this paper we examine how FPGAs can be used trans-

parently in datacenter servers. In particular, we examine how
FPGAs can be shared by multiple applications. We design
and implement VineTalk, a system that provides a hardware-
agnostic abstraction and in fact, is designed to be used with
different accelerators, including FPGAs and GPUs. VineTalk
uses an RPC-like API and a communication channel based on
shared memory to allow low-overhead, shared access from
applications to accelerators. Our approach is orthogonal to
FPGA partitioning and can allow multiple applications to share
each partition in an FPGA. Our results show that VineTalk
reduces both programmer effort at the application level by
reducing lines of code related to kernel invocation by about
30% with significantly simpler semantics and introduces over-
head between 0.9% and 4% compared to native application
execution over the FPGA. Finally, VineTalk provides the ability
of accelerator sharing from consolidated applications, with less
than 2% overhead.

VII. ACKNOWLEDGMENTS
This work has received funding from the European Union’s

Horizon 2020 research and innovation program under grant
agreement No 6876281.

REFERENCES

[1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on, 2016.

[2] F. Kruger, “Cpu bandwidth - the worrisome 2020 trend,” https://itblog.
sandisk.com/cpu-bandwidth-the-worrisome-2020-trend, 2016.

[3] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. A. Najjar, “High-level language tools for reconfigurable computing,”
Proceedings of the IEEE, 2015.

[4] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala, “Sparkcl:
A unified programming framework for accelerators on heterogeneous
clusters,” CoRR, 2015.

[5] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized fpga accelerators
for efficient cloud computing,” in 7th IEEE International Conference on
Cloud Computing Technology and Science., 2015.

[6] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, “Virtualized
execution runtime for fpga accelerators in the cloud,” IEEE Access, 2017.

1VINEYARD: Versatile Integrated Accelerator-based Heterogeneous Data
Centers.

https://itblog.sandisk.com/cpu-bandwidth-the-worrisome-2020-trend
https://itblog.sandisk.com/cpu-bandwidth-the-worrisome-2020-trend
ckach
Text Box
We thank Xilinx University Program for the kind donation of the Software and hardware platforms.


	Introduction
	Related work
	The VineTalk Framework
	Software Facing API
	Communication Layer
	Software Controller
	Hardware Facing API

	Integration with SDAccel
	Performance Evaluation
	Experimental Setup
	VineTalk overhead
	Accelerator sharing

	Conclusions
	Acknowledgments
	References



