
SPynq: Acceleration of Machine Learning
Applications over Spark on Pynq

Christoforos Kachris
Institute of Communication and

Computer Systems (ICCS/NTUA)
Athens, Greece

Elias Koromilas, Ioannis Stamelos
Department of Electrical and

Computer Engineering,
National Technical University of Athens

Athens, Greece

Dimitrios Soudris
Department of Electrical and

Computer Engineering,
National Technical University of Athens

Athens, Greece

Abstract—Spark is one of the most widely used frameworks
for data analytics that offers fast development of applications like
machine learning and graph computations in distributed systems.
In this paper, we present SPynq: A framework for the efficient
utilization of hardware accelerators over the Spark framework
on heterogeneous MPSoC FPGAs, such as Zynq. Spark has
been mapped to the Pynq platform and the proposed framework
allows the seamlessly utilization of the programmable logic for the
hardware acceleration of computational intensive Spark kernels.
We have also developed the required libraries in Spark that hides
the accelerator’s details to minimize the design effort to utilize
the accelerators.

A cluster of 4 nodes (workers) based on the all-programmable
MPSoCs has been implemented and the proposed platform
is evaluated in a typical machine learning application based
on logistic regression. The logistic regression kernel has been
developed as an accelerator and incorporated to the Spark.
The developed system is compared to a high-performance Xeon
cluster that is typically used in cloud computing. The perfor-
mance evaluation shows that the heterogeneous accelerator-based
MpSoC can achieve up to 2.3x system speedup compared with
a Xeon system (with 90% accuracy) and 20x better energy-
efficiency. For embedded application, the proposed system can
achieve up to 40x speedup compared to the software only
implementation on low-power embedded processors and 30x
lower energy consumption.

I. INTRODUCTION

Emerging applications like cloud computing, machine learn-
ing, graph computations and big data analytics require power-
ful systems that can process large amounts of data without con-
suming high power. Furthermore, these emerging applications
require fast time-to-market and reduced development times.
To address the large processing requirements of emerging
applications, novel architectures are required in the domain
of high-performance and energy-efficient processors.

Relying on Moore’s law, CPU technologies have scaled
in recent years through packing an increasing number of
transistors on chip, leading to higher performance. However,
on-chip clock frequencies were unable to follow this upward
trend due to strict power-budget constraints. Thus, a few years
ago a paradigm shift to multicore processors was adopted
as an alternative solution for overcoming the problem. With
multicore processors we could increase server performance
without increasing their clock frequency. Unfortunately, this
solution was also found not to scale well in the longer

term. The performance gains achieved by adding more cores
inside a CPU come at the cost of various, rapidly scaling
complexities: inter-core communication, memory coherency
and, most importantly, power consumption [1].

Therefore, the failure of Dennard’s scaling, to which the
shift to multicore chips is partially a response, may soon limit
multicore scaling just as single-core scaling has been curtailed
[2]. This issue has been identified in the literature as the dark
silicon era in which some of the areas in the chip are kept
powered down in order to comply with thermal constraints [3].
One way to address this problem is through the utilization of
hardware accelerators. Hardware accelerators can be used to
offload the processor, increase the total throughput and reduce
the energy consumption.

In this paper we present a framework for the seamlessly
utilization of hardware accelerators in heterogeneous SoCs
under the Spark framework.

The main contributions of this paper are the followings:
• An efficient framework for the seamlessly utilization of

hardware accelerators for Spark applications in heteroge-
neous FPGA-based MPSoCs

• The development of an efficient set of libraries that hide
the accelerator’s details to simplify the incorporation of
hardware accelerators in Spark

• Mapping of the accelerated Spark to a heterogeneous 4-
nodes cluster of all-programmable MPSoCs (Zynq) based
on the Pynq platform

• A performance evaluation for a use-case on machine
learning (logistic regression) in terms of performance and
energy efficiency that shows how the proposed framework
could achieve up to 2.3x speedup (for up to 90% accu-
racy) compared to a high-performance processor and 20x
lower energy consumption.

• For embedded applications, the proposed system can
achieve up to 40x system speedup compared to embedded
processors and 30x better energy efficiency.

II. RELATED WORK

In the last few years, there are several efforts for the efficient
deployment of hardware accelerators for cloud computing.

In [4], a detailed survey on hardware accelerator for cloud
computing applications has been presented. The survey shows

both the programming framework that have been developed
for the efficient utilization of hardware accelerators and the
accelerators that have been developed for several applications
like machine learning, graph computation applications and
databases.

IBM has announced in 2016, the availability of SuperVes-
sel cloud, a development framework for the OpenPOWER
Foundation. SuperVessel has been developed by IBM Sys-
tems Labs and IBM Research based in Beijing. The goal
of the SuperVessel cloud is to deliver a virtual environment
for the development, testing and piloting of applications.
The SuperVessel cloud framework takes advantage of IBM
POWER 8 processors. Developers have access to Xilinx FPGA
accelerators which use IBMs Coherent Accelerator Processor
Interface (CAPI). Using CAPI an FPGA is able to appear to
the POWER 8 processor as if it were part of the processor.

Xilinx has also announced in late 2016 a new framework
called Reconfigurable Acceleration Stack. This stack is aimed
at hyper scale data center that need to deploy FPGA accelera-
tor. The FPGA boards can be hosted in typical servers and are
utilized based on application specific libraries and framework
integration for the five key workloads. These include ma-
chine learning inference, SQL query and data analytics, video
transcoding, storage compression, and network acceleration
[5]. According to Xilinx, the acceleration stack based on the
FPGAs can deliver up to 20x acceleration over traditional
CPUs with a flexible, reprogrammable platform for rapidly
evolving workloads and algorithms.

In [6], a novel approach for integrating virtualized FPGA-
based hardware resources into cloud computing systems with
minimal overhead. The proposed framework allows cloud
users to load and utilize hardware accelerators across multiple
FPGAs using the same methods as the utilization of Virtual
Machines. The reconfigurable resources of the FPGA are
offered to the users as a generic cloud resources through
OpenStack.

In [7], an integrated framework is presented for the ef-
ficient utilization of hardware accelerators under the Spark
framework. The proposed scheme is based on a cluster-wise
accelerator programming model and runtime system, named
Blaze, that is portable across accelerator platforms. Blaze has
mapped to the Spark cluster programming framework. The
accelerators are abstracted as subroutines for Spark tasks.
These subroutines can be executed on local accelerators when
they are available. Otherwise the subroutines will be executed
on the CPU to guarantee application correctness.

The proposed scheme has been mapped to a cluster of 8
Xilinx Zynq boards that host two ARM processors and a
reconfigurable logic block. The performance evaluation shows
that the proposed system can achieve up to 1.44× speedup
for the Logistic regression and almost the same throughout
for the K-Means and 2.32× and 1.55× better energy efficiency
respectively. It has been also mapped to typical FPGA devices
connected to the host through the PCI interface. In this case,
the performance evaluation shows that the proposed system
can achieve up to 3.05× speedup for the Logistic regression

and 1.47× speedup for the K-Means and reduces the overall
energy consumption by 2.63× and 1.78× respectively.

In this paper, we present a seamlessly utilization of hard-
ware accelerators that can be used both for embedded sys-
tems and high-performance applications that are based on
the Spark framework for computational intensive applications
like machine learning and graph computation. The proposed
framework allows the seamlessly utilization on the hardware
accelerators based on the Spark framework using the acceler-
ators as typical python packages.

III. SPARK FRAMEWORK

One of the typical applications that are hosted in cloud
computing is data analytics. Apache Spark [8] is one of the
most widely used frameworks for data analytics. Spark has
been adopted widely in recent years for big data analysis
by providing a fault-tolerant, scalable and easy to use in-
memory abstraction. Specifically, Spark provides programmers
with an application programming interface centered on a data
structure called the resilient distributed dataset (RDD). RDD
is a read-only multiset of data items distributed over a cluster
of machines, that is maintained in a fault-tolerant way [9]. It
was developed in response to limitations in the MapReduce
cluster computing framework, which forces a particular lin-
ear dataflow structure on distributed programs. MapReduce
programs read input data from disk, map a function across
the data, reduce the results of the map, and store reduction
results on disk. Spark’s RDDs function as a working set for
distributed programs that offers restricted form of distributed
shared memory. Therefore, the latency of such applications,
compared to Apache Hadoop, may be reduced by several
orders of magnitude.

When the user runs an action (like collect), a Graph is cre-
ated and submitted to a DAG Scheduler. The DAG scheduler
divides operator graph into (map and reduce) stages. A stage
is comprised of tasks based on partitions of the input data.
The DAG scheduler pipelines operators together to optimize
the graph. The final result of a DAG scheduler is a set of
stages. The stages are passed on to the Task Scheduler. The
task scheduler launches tasks via cluster manager. The Worker
then executes the tasks for the task processing [9].

Spark libraries covers 4 main categories of applications:
machine learning (MLib), graph computation (GraphX), SQL
query and streaming applications.

IV. PYNQ: ALL PROGRAMMABLE SYSTEMS ON CHIPS
(APSOCS)

Xilinx released in 2016 the Pynq framework that allows
the utilization of the heterogeneous all-programmable SoC
based on Python [10]. Using the Python language and libraries,
designers can exploit the benefits of programmable logic and
microprocessors in Zynq to build more capable and exciting
embedded systems. Programmable logic circuits are presented
as hardware libraries called overlays. These overlays are
analogous to software libraries. A software engineer can select
the overlay that best matches their application. The overlay

can be accessed through an application programming interface
(API)

The Pynq platform is based on the Zynq all-programmable
SoC. Zynq FPGA incorporates two RISC Cortex A9 ARM
cores and a programmable logic unit in a single chip [7].
Each of these cores has 32 KB Level 1 4-way set-associative
instruction and data cache and they share a 512 KB Level 2
cache. The processors are clocked at 667 Mhz and they have
coherent multiprocessor support.

Zynq platform has a high performance interface for the di-
rect communication of the ARM cores with the programmable
logic part. The high performance bus is based on the ARM
AMBA 3.0 interconnection that has several advantages such as
QoS, multiple-outstanding transactions and low-latency paths.

V. SPYNQ: A FRAMEWORK FOR SPARK EXECUTION ON
PYNQ PLATFORM

On top of the Pynq framework, we have efficiently mapped
the Spark framework and we have adapted it to communicate
with the hardware accelerators located in the programmable
logic of the Zynq system. Spark master node is hosted on
a personal computer that comes with an Intel i5 x86 64
architecture processor, but also an Intel x86 or ARM system
could be used. Worker nodes are hosted on PYNQ’s ARM
cores.

Figure 1 shows the proposed cluster architecture. More
workers beyond PYNQ cores’ could be used to take
advantage of all the available processing resources.
This heterogeneity in workers is supported by simply
adding SPARK WORKER TYPE option under nodes’
spark-env.sh configuration. When workers start each
entry of their spark-env.sh is added as an environment
variable and can be simply accessed in Python by calling
os.environ.get(). If ’None’ or ’0’ (zero) is returned
from os.environ.get(′SPARK WORKER TY PE′), no
programmable logic is available.

In addition, Spark comes with three different cluster man-
agers: standalone, yarn and mesos. For the specific evaluation,
standalone manager is used in client mode, meaning that the
driver of Spark is launched in the same process as the client
that submits the application. Each worker node is configured
for starting one executor instance with all cores available.
Furthermore, a python API is used for each accelerator that
is used for the communication with the hardware accelerator.
Each Python API is communicating with the C library that
serves as the hardware accelerator driver.

On the reconfigurable logic part, the hardware accelera-
tors for the specific application are hosted. The hardware
accelerators are invoked by the python API of the Spark
application. Therefore, the only modification that is required
is the extension of the python library with the new function
calls for the communication with the hardware accelerator.

In the typical case, the Spark application invokes the Spark
MLlib and this library utilizes the Breeze library (a numerical
processing library for Scala). Breeze library invokes the Netlib
Java framework that is a wrapper for low-level linear algebra

trainRDD

PYNQ PYNQ PYNQ
data1 data2 data3

weights weights weights

Map data (gradients_kernel_accel)
&

Reduce gradients (aggregate)

PL PL PL

gradients1 gradients3

gradients2

Driver Program

Worker
Node

SparkContext

Worker
Node

Worker
Node

Master Node

Fig. 1. Spynq architecture (LR MapReduce)

tools implemented in C or Fortran. Netlib Java is executed
through the Java Virtual Machine (JVM) and the actual linear
algebra tools (BLAS - Basic Linear Algebra Subprograms) are
executed through the Java Native Interface (JNI).

All these layers add significant overhead to the Spark
applications. Especially in applications like machine learning,
where heavy computations are required, these layers add
significant overhead to the kernels. Most of the clock cycles
are wasted for passing through all these layers.

The utilization of hardware accelerators directly from Spark
has two major advantages; firstly, the application in Spark
remains as it is and the only modification that is required is
the replacement of the machine learning library’s function with
the function that invokes the hardware accelerator. Secondly
the invoking of the hardware accelerators from the python API
eliminates many of the original layers thus making faster the
execution of these tasks. The python API invokes the C API
that serves as a hardware acceleration’s library.

VI. A USE-CASE ON MACHINE LEARNING USING
LOGISTIC REGRESSION

To evaluate the proposed framework, we have developed
a hardware accelerator for Logistic Regression (LR) training
with BGD and more specifically for the gradients kernel. The
hardware accelerator has been implemented using the Xilinx
Vivado High-Level Synthesis (HLS) tool. The LR application
has been written in C and has been annotated with HLS
pragmas for the efficient mapping in reconfigurable logic.

A. Algorithmic approach

Logistic Regression is used for building predictive models
for many complex pattern-matching and classification prob-
lems. It is used widely in such diverse areas as bioinformatics,
finance and data analytics. It is also one of the most popular
machine learning techniques. It belongs to the family of
classifiers known as the exponential or log-linear classifiers
and is widely used to predict a binary response.

For binary classification problems, the algorithm outputs
a binary logistic regression model. Given a new data point,
denoted by x, where x0 = 1 is the intercept term, the
model makes predictions by applying the logistic function
h(z) = 1

1+e−z , where z = wTx.
By default, if h(wTx) > 0.5, the outcome is positive, or

negative otherwise, though unlike linear SVMs (Support Vec-
tor Machines), the raw output of the logistic regression model,
h(z), has a probabilistic interpretation (i.e., the probability that
x is positive).

Given a training set with numSamples (nS) data points
and numFeatures (nF) features (not counting the intercept
term) {(x0, y0), (x1, y1), , (xnS−1, ynS−1)}, where yi is the
binary label for input data xi indicating whether it belongs to
the class or not, logistic regression tries to find the parame-
ter argument w (weights) that minimizes the following cost
function:

J(w) = − 1

nS

nS−1∑
i=0

{yi log[h(wTxi)]+(1−yi) log[1−h(wTxi)]}

The problem is solved using (Batch) Gradient Descent over
the training set (BGD) (α is the learning rate):

1 : procedure train(x, y)
2 : initialize w with zero
3 : while not converged:
4 : gradients kernel(x, y, w)
5 : for every j = 0, ..., nF :
6 : wj− = α

nS gj

7 : procedure gradients kernel(x, y, w)
8 : for every j = 0, ..., nF :
9 : gj =

∑nS−1
i=0 {[h(wTxi)− yi]xij}

For multi-class classification problems, the algorithm com-
pares every class with all the remaining classes (One versus
Rest) and outputs a multinomial logistic regression model,
which contains numClasses (nC) binary logistic regression
models. Given a new data point, nC models will be run,
and the class with largest probability will be chosen as the
predicted class.

Figure 2 depicts the high level architecture of the SPynq
framework on Zynq and the block diagram of the logistic re-
gression accelerator. The driver is used to send the parameters
through the AXI interface to the hardware accelerator. In the
example depicted above (Figure 2), four different channels
are used for the communication between the ARM and the
accelerator; two channels are used for sending the data and
one channel is used for sending the weights. One more channel
is used to receive the results of the accelerator (gradients).
Finally, to speedup the execution time, the programmable logic
hosts two copies of the kernels that can be running in parallel.
Each kernel consists of four blocks that are used calculate the
gradients and are pipelined to increase the overall throughput.

Programmable Logic

Processing System

AXI Interconnect

ARM
Cortex-A9

ARM
Cortex-A932 KB

D Cache
32 KB

D Cache

32 KB
I Cache

AXI
DMA

AXI
DMA

AXI
DMA

AXI
DMA

ZYNQ-7000 All Programmable SoC

gradients_kernel2

gradients_kernel1

data1 data2gradientsweights

dotk+=weightsk,j*x
i
j, for every k,j

Aggregate gradients1,2

32 KB
I Cache

predictionk=h(dotk), for every k

difk=predictionk–y
i
k, for every k

gradients
1
k,j+=difk*x

i
j, for every k,j

ch
u

n
kS

iz
e/

2

Fig. 2. Acceleration of Spark on a Zynq FPGA based on the Pynq platform.
In this use-case a hardware accelerator has been developed for the Logistic
Regression

B. Spark integration & Python API

In Spark gradients kernel can be parallelized using Map-
Reduce, so partial gradients are computed in each Worker,
using different chunks of the training set, and then the Master
aggregates them and updates w.

The Spark code for the utilization of the hardware ac-
celerator through our accelerated machine learning library is
shown in the following figure. When the Spark user wants to
utilize the hardware accelerator, the only change that needs
to be made is the replacement of the Spark mllib library
with the mllib accel library. Therefore, the user can speedup
the execution time of the Spark application with a simple
replacement of the libraries that wish to accelerate.

from mllib accel.classification import LogisticRegression
from pyspark import SparkContext

sc = SparkContext(appName = ”Python LR”)

trainRDD = sc.textFile(train file, numPartitions)
testRDD = sc.textFile(test file, numPartitions)

LR = LogisticRegression(numClasses, numFeatures)
LR.train(trainRDD, chunkSize, alpha, iterations)
LR.test(testRDD)

sc.stop()

More specifically, in Python, a Logistic Regression object is
created and various methods are supported (train, test, predict
etc.). Each required action is passed in a map statement which
is followed by a corresponding reduce or collect action. In
example, in method train of the Logistic Regression object,
gradients kernel is mapped to all available workers and then
on the workers’ side SPARK WORKER TYPE environment
variable is checked. If ’None’ or ’0’ is returned, the whole
process remains intact and the computations are executed on
the CPU cores, else accelerator’s specific library is called to
take advantage of the programmable logic.

It is made clear that the most of the time (99,2%) is
wasted on writing the train data to the allocated DMAs’
buffers. Since they remain the same over the whole execution
of the Logistic Regression training, we have managed and
implemented a novel scheme that allow the persistent storing
of the data every time the accelerator is invoked. The first
approach was to create once the DMA objects and save them
to a new RDD, but Spark uses by default pickle serializer that
doesn’t support many types of serializable items and caching
this RDD would end up raising exception. One option was
to create a new serializer for the specific type of returned
object and add this to Spark, but doing so would end up
in a very complex implementation. Contrary, we chose to
implement a new function that returns the allocated buffers
for the corresponding data needed for the accelerator. In that
function also the train data are written into the buffers and
remain there for the rest of the application execution. Every
time that DMA objects are created, there is no need to create
new buffers for them and fill them with the corresponding
data, they just get assigned the previously created ones. Also,
before destructing DMA objects, their assigned buffers are set
to ’None’, so that they remain intact and are not freed.

Based on the above, we have created a python API which
basically consists of three calls:

• cma (contiguous memory allocate): This call is used for
the creation of the buffers and the further allocation of
contiguous memory. Also at this point overlay is down-
loaded and train data are written to the corresponding
buffers .

• gradients kernel accel: In this call, the DMA objects
are created using Xilinx’s built-in modules and classes;

4 40 400 4000 40000
0

5

10

15

20

25

30

35

40

45

50

0x
2x
4x
6x
8x
10x
12x
14x
16x
18x
20x
22x

Batch Gradient Descent (5 iterations, 40k train size)

SW-only (ARM A9) HW accelerated Speedup

chunkSize (data lines)

Ti
m

e
 (

se
c)

Fig. 3. Performance measurements for different chunk sizes in ZC702

Fig. 4. Photo of the Pynq cluster

previously allocated buffers are assigned to DMAs, cur-
rent weights are written to memory and finally data
are transfered to the programmable logic. Gradients are
computed in return, buffers are dis-assigned from DMAs
and the last ones are destructed.

• cmf (contiguous memory free): This call is explicitly used
to free all previously allocated buffers.

It is important to note that the above demonstrated API is
Spark independent and can be used in any python application.

VII. PERFORMANCE EVALUATION

As a case study, we built a classification model with 784
features and 10 labels using 40k available training samples,
for a handwritten digits recognition problem. To evaluate the
performance of the system and to perform a fair comparison
we built a cluster of 4 nodes with the Pynq platform (Figure 4
and we compare it with four cores using the Xeon processors.
Table I shows the features of each platform. The Xeon system
consists of 12 cores with 2 threads each core. The cluster
made on this platform allocates 4 our of 24 threads in order
to compare it with the 4 nodes of the Pynq cluster (each
Pynq cluster allocates only 1 out of the 2 cores). We also
compare the accelerated platform with the software only
solution executed only on the ARM cores for embedded
applications where only embedded processors can be used and
high performance processors like Xeon cannot be supported
due to power constraints.

The following paragraphs shows the performance evaluation
in terms of power and execution time.

TABLE I
MAIN FEATURES OF THE EVALUATED PROCESSORS

Features Xeon Zynq

Vendor Intel ARM

Processor E5-2658 A9

Cores (threads) 12(24) 2

Architecture 64-bit 32-bit

Instruction Set CISC RISC

Process 22nm 28nm

Clock Frequency 2.2 GHz 667 MHz

Level 1 cache 380 kB 32 kB

Level 2 cache 3 MB 512 kB

Level 3 cache 30 MB -

TDP 105W 4W

Operating system Ubuntu Ubuntu

TABLE II
RESOURCE ALLOCATION OF THE LOGISTIC REGRESSION ACCELERATOR

Resources Used Total Utilization
DSP 160 220 73%
BRAM 42 140 30%
LUT 44177 53200 83%
FF 47841 106400 45%

A. Latency and Execution time

In cases that the communication of the processor and the
accelerator is often and bidirectional, this latency can be a ma-
jor overhead and may diminish the speedup of the accelerator.
However, in applications where the processor sends a bulk
amount of data (e.g. through the AXI streaming interface),
the communication overhead is overlapped by the computation
time.

In the case of the Logistic Regression with BGD, the
processor needs to send a large amount of data for the training
of the application and therefore the communication overhead
is overlapped by the computation time. In terms of resource
allocation, Table II shows the utilization of the hardware
resources for the Zynq FPGA SoC.

Figure 3 depicts how the performance is affected by the
packet size sent to the accelerator (overlays), according to
measurements performed in the Xilinx ZC702 evaluation
board (C implementation) using SDSoc. As the size of the
chunk (packets), that is transferred through AXI stream to
the accelerator, gets smaller (such as 4 or 40 data lines), the
communication overhead limits the speedup. If the size of the
packets sent to the accelerator is over 400 data lines, then the
communication overhead is overlapped by the computational
saving in terms of execution times. The maximum kernel
speedup is achieved (21×) when the packet size is over 4000
data lines (∼ 12 Mbytes). This means that by splitting each
partition of the RDD into chunks between 4k and 5k lines (to
make use only of simple DMAs) we can exploit our accelerator
to the maximum.

Figure 5 depicts the execution time of the Logistic Re-

25 50 75 100 125 150
0

50

100

150

200

250

300

350

400

450

0x

1x

2x

3x

Logistic Regression Training (1 Master / 4 Workers)

SW-only (Intel XEON) HW accelerated Speedup

iterations

Ti
m

e
 (

se
c)

Fig. 5. Speedup versus the number of the iterations, using the proposed
Python API

TABLE III
EXECUTION TIME (SEC) OF THE WORKER FUNCTIONS

Function Xeon ARM Zynq (ARM+HW)
Data extraction 7.5 114 114 (ARM)
Kernel (Batch Gradient
Descent) (per iteration)

2.6 45.4 0.5 (Accel)

gression application running on a high-performance x86 64
Intel processor (Xeon E5 2658) clocked at 2.2 GHz and on
PYNQ’s programmable logic for an input dataset of 40000
lines splitted in chunks of 5000 lines for various numbers
of iterations (Python implementation). As it is shown, the
acceleration factor is equivalent to the number of the iterations.

In more detail, in Pynq the data extraction, takes about
114 sec while every iteration of the algorithm is completed
in 0.45 sec since the train input data is already cached into
the previously allocated buffers. On the other hand, Xeon
reads and transforms the data in only 7.5 sec, but every BGD
iteration takes about 2.6 sec.

So the speedup actually depends on the number of iterations
that are performed. For the specific application we can achieve
up to 90% accuracy with 150 iterations in which we achieve
up to 2.3 system speedup compared to the Xeon cluster.
However, there are applications in which much higher number
of iterations are required. In that case, much higher speedup
can be achieved. Table III shows the execution time of the two
main functions that are executed on the worker nodes. In the
Xeon platform and the ARM case, both the data extraction and
the BGD are executed on the processors, while in the Zynq
platform the data extraction is executed on the ARM core
and the BGD function is executed on the programmable logic
(accelerator). Therefore, for application where much higher
number iterations are required the system speedup converges
to 8.5×.

Figure 6 shows the speedup and the execution time of
the accelerated platform compared to the software only so-
lution running on the ARM processors. In this case, we
can achieve up to 40× speedup compared to software only
solution. This comparison is useful for applications in which

25 50 75 100 125 150
0

1000

2000

3000

4000

5000

6000

7000

8000

Logistic Regression Training (1 Master / 4 Workers)

SW-only (ARM) HW accelerated Speedup

iterations

Ti
m

e
 (

se
c)

Fig. 6. Speedup versus the number of the iterations, using the proposed
Python API

high-performance processors cannot be used due to power
limitations (e.g. embedded systems).

B. Power and energy consumption

To evaluate the energy savings we have also measured the
power consumption using the ZC702 board which hosts the
same Zynq device as the Pynq platform. We measured the
average power running the algorithm both in the SW-only (for
the Xeon and the ARM processors), and the HW accelerated
case.

Figure 7 shows the dynamic power consumption of the
software only and the accelerated cases. In the first case,
the LR kernel executed on the ARM cores takes around
204 seconds to complete and the total power consumption
is 2.3 Watts, resulting to 469.1 Joules. In the second case,
the kernel is executed in the programmable logic using the
hardware accelerator. As we can see, in this case, the power
consumption has been increased to 3.1 Watts. However, in
that case the total execution time is 9.5 seconds thus the
total energy consumption drops to 29.3 Joules. Therefore, the
proposed scheme can not only speedup the execution time but
also can achieve up to 16× energy efficiency.

Figure 8 shows the energy consumption comparison be-
tween the Xeon and the Zynq platform and Figure 9 shows
the energy consumption comparison between the ARM and the
Zynq platform. In the first case, the average power consump-
tion of Xeon processors and the DRAMs is 103 Watt while
the Zynq platform (both the MPSoC FPGA and the DRAM)
is 3 Watt. In that case, we can achieve up to 20× better energy
efficiency due to the lower power consumption and the lower
execution time. In order to measure the energy consumption of
the Xeon server, Intels Processor Counter Monitor (PCM) API
is used. Among others, PCM API enables capturing the energy
consumed by the CPU and DRAM memory for executing an
application.

Figure 9 shows the energy consumption comparison be-
tween the ARM and the Zynq platform. In the this case
the power consumption of the accelerated platform (Zynq) is
slightly higher than the power consumption of the ARM-only

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

SW-only (ARM A9)

Power-Delay-Product 469.113 J

Time (sec)

P
o

w
e

r
(m

W
)

0

500

1000

1500

2000

2500

3000

3500

HW accelerated

Power-Delay-Product 29.281 J

Time (sec)

P
o

w
e

r
(m

W
)

Total PL logic circuits

Other PS logic circuits

DDR I/Os & DDR3 memories

Fig. 7. Comparison of the power consumption in the SW-only (ARM) and
the accelerated version

25 50 75 100 125 150
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Logistic Regression Training (1 Master / 4 Workers)

SW-only (Intel XEON) HW accelerated Energy efficiency

iterations

E
n

e
rg

y
(J

o
u

le
)

Fig. 8. Energy consumption of the Xeon and the Zynq platform based on the
number of iterations

platform, but due to the significant much higher execution time
of the ARM-only solution we can achieve up to 30× lower
energy consumption.

25 50 75 100 125 150
0

10000

20000

30000

40000

50000

60000

70000

Logistic Regression Training (1 Master / 4 Workers)

SW-only (ARM) HW accelerated Energy efficiency

iterations

E
n

e
rg

y
(J

o
u

le
)

Fig. 9. Energy consumption of the ARM-only and the Zynq platform based
on the number of iterations

VIII. CONCLUSIONS

Hardware accelerators can improve significantly the perfor-
mance and the energy efficiency of data analytic applications.
However, currently data analytics frameworks like Spark do
not support the seamlessly utilization of hardware accelerators.
In this paper we have a present a novel scheme for the
seamlessly utilization of hardware accelerators using the Spark
framework that is widely used in data analytics. We have
implemented a hardware accelerator for logistic regression that
is connected to processors through the AXI interface and we
have integrated the accelerator with the Spark framework in a
cluster of all-programmable MPSoCs.

The proposed system can be used both in high performance
systems to reduce the energy consumption (up to 20×) and
also reduce up to 2.3× the execution time, while in embedded
systems it can achieve up to 40× speedup compared to the em-
bedded processors and up to 30× lower energy consumption
for 150 iterations.

It also shows that the proposed framework can be utilized to
support any kind of hardware accelerators in order to speedup
the execution time of computational intensive machine learn-
ing and data analytics applications based on Spark.

IX. ACKNOWLEDGMENTS

This project has received funding from the European
Union Horizon 2020 research and innovation programme
under grant agreement No 687628 - VINEYARD: Versa-
tile Integrated Accelerator-based Heterogeneous Data Centers
www.vineyard-h2020.eu. We would like to acknowledge Xil-
inx University Program for the kind donation of the software
tools and hardware platforms.

REFERENCES

[1] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Power challenges may end the multicore era.
Commun. ACM, 56(2):93–102, February 2013.

[2] Christian Martin. Post-Dennard Scaling and the final Years of Moores
Law. Technical report, 2014.

[3] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. IEEE Micro,
32(3):122–134, May 2012.

[4] C. Kachris and D. Soudris. A survey on reconfigurable accelerators
for cloud computing. In 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–10, Aug 2016.

[5] Xilinx reconfigurable Acceleration Stack targets machine learning, data
analytics and Video Streaming. Technical report, 2016.

[6] S. Byma, J.G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow.
Fpgas in the cloud: Booting virtualized hardware accelerators with open-
stack. In Field-Programmable Custom Computing Machines (FCCM),
2014 IEEE 22nd Annual International Symposium on, pages 109–116,
May 2014.

[7] Jason Cong, Muhuan Huang, Di Wu, and Cody Hao Yu. Invited -
heterogeneous datacenters: Options and opportunities. In Proceedings
of the 53rd Annual Design Automation Conference, DAC ’16, pages
16:1–16:6, New York, NY, USA, 2016. ACM.

[8] Apache, spark, http://spark.apache.org/.
[9] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’12,
pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[10] Pynq: Pyhton productivity for Zynq. Technical report, 2016.

